SentenceTransformer based on jinaai/jina-embeddings-v2-small-en

This is a sentence-transformers model finetuned from jinaai/jina-embeddings-v2-small-en. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

https://wandb.ai/deklanw/sentence-transformers/runs/frjg0h13?nw=nwuserdeklanw

Model Description

  • Model Type: Sentence Transformer
  • Base model: jinaai/jina-embeddings-v2-small-en
  • Maximum Sequence Length: 2048 tokens
  • Output Dimensionality: 512 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: JinaBertModel 
  (1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("borgcollectivegmbh/jina-embeddings-v2-small-en_linkedin_profile_model_run1")
# Run inference
sentences = [
    'Experienced in SAP consultancy',
    '=== PERSON ===\nMärt Ehrenpreis\nN/A\nTallinn Metropolitan Area\n470\n\n=== ROLES ===\n>>> COMPANY ROLES <<<\n\nCompany Role #1:\n  Board Member CTO\n  2023-04 - N/A\n  N/A\n  Elron / Eesti Liinirongid AS \n  eestiliinirongid\n  Truck Transportation\n  Loome Sulle aega – viime Sind kohale kiiresti, turvaliselt ja mugavalt\n  414\n\nCompany Role #2:\n  Managing Director, Proxion Plan Estonia OÜ\n  2021-01 - 2023-04\n  N/A\n  Proxion\n  proxion-plan-oy\n  Civil Engineering\n  Proxion on osa WSP-yhtiöitä.\nOtathan seurantaan WSP in Finland -tilin!\n  2563\n\n>>> SCHOOL ROLES <<<\nNo school roles listed.',
    "=== PERSON ===\nHarvindar Singh Garcha\nHarvindar's passion for technology can be traced back right from his childhood, Getting into the field of computer science bought him to have more focus on his goal. He is a fast learner and easily adapts to new skills. He always has the hunger and curiosity to learn new skills. <br><br>He has expertise in the design &  development of RESTful APIs and back-end services utilizing Python ecosystem, Django, Flask, Docker, and SQL with an emphasis on scalability and security.<br><br>He is currently working as a full stack developer at AI Automotive company where he has worked on technologies Django, Flask, Python, RESTful APIs, React, Redux, Celery, and JavaScript, while keeping in mind all the secure code practices of OWASP top 10.<br><br>His specialties include quickly learning new skills, Programming languages, and Critical thinking in problem-solving.<br><br>In his free time, you will find him reading articles about the latest trending technologies on Internet,  Spending some time on Quora & hiking on the mountains.\nPune, Maharashtra, India\n1294\n\n=== ROLES ===\n>>> COMPANY ROLES <<<\n\nCompany Role #1:\n  Software Development Analyst\n  2020-04 - 2020-08\n  N/A\n  Metta Social\n  metta-social\n  IT Services and IT Consulting\n  Building world’s largest common good platform to enable sustainable impact at scale!\n  4002\n\nCompany Role #2:\n  Junior Backend Engineer\n  2020-09 - 2021-03\n  N/A\n  SRV Media\n  srv-media\n  Advertising Services\n  Insights | Ideas | Impact\n  49579\n\nCompany Role #3:\n  Full Stack Developer\n  2021-03 - 2022-01\n  N/A\n  SRV Media\n  srv-media\n  Advertising Services\n  Insights | Ideas | Impact\n  49579\n\nCompany Role #4:\n  Software Development Intern\n  2019-10 - 2020-03\n  Currently building a B2B social ecosystem platform where my daily work includes to develop and unit test REST API's using Flask and ORM using SQLAlchemy.<br><br>- Contributed 90% of the API's for mobile application which was build in just a month keeping in mind all the secure code practices of OWASP Top 10.<br><br>- Building REST API using Flask framework, for web app & checking the load balancing of concurrent users.<br>        <br>- Building database model using SQL-Alchemy, and connecting it to Heroku.<br><br>- Security Testing of the API's !\n  Metta Social\n  metta-social\n  IT Services and IT Consulting\n  Building world’s largest common good platform to enable sustainable impact at scale!\n  4002\n\nCompany Role #5:\n  Research And Development Engineer\n  2022-01 - N/A\n  N/A\n  Cerence Inc.\n  cerence\n  Software Development\n  Cerence is the global industry leader in creating unique, moving experiences for the mobility world.\n  44039\n\n>>> SCHOOL ROLES <<<\nNo school roles listed.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 512]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

  • Datasets: ``, rec_test_evaluator and query_test_evaluator
  • Evaluated with custom_evaluator.BinaryClassificationEvaluator
Metric rec_test_evaluator query_test_evaluator
cosine_accuracy 0.9527 0.9369 0.9622
cosine_accuracy_threshold 0.2778 0.3141 0.263
cosine_f1 0.8559 0.7995 0.885
cosine_f1_threshold 0.2539 0.2846 0.2541
cosine_precision 0.8474 0.8165 0.8894
cosine_recall 0.8646 0.7832 0.8805
cosine_ap 0.9214 0.87 0.9475
dot_accuracy 0.9287 0.9174 0.9483
dot_accuracy_threshold 7.1923 4.7818 8.4253
dot_f1 0.7795 0.7457 0.8433
dot_f1_threshold 6.0999 4.3656 7.5479
dot_precision 0.7621 0.7486 0.8372
dot_recall 0.7976 0.7428 0.8495
dot_ap 0.8651 0.7954 0.9205
manhattan_accuracy 0.8422 0.8619 0.8801
manhattan_accuracy_threshold 69.5022 69.5686 116.771
manhattan_f1 0.3987 0.507 0.56
manhattan_f1_threshold 133.9353 82.6656 128.6138
manhattan_precision 0.2726 0.4506 0.5831
manhattan_recall 0.742 0.5796 0.5387
manhattan_ap 0.3697 0.5479 0.6344
euclidean_accuracy 0.8425 0.8626 0.8804
euclidean_accuracy_threshold 3.8574 3.8601 6.4738
euclidean_f1 0.3999 0.5062 0.5614
euclidean_f1_threshold 7.4916 4.6146 7.1657
euclidean_precision 0.2716 0.4435 0.5753
euclidean_recall 0.7579 0.5894 0.5481
euclidean_ap 0.37 0.5487 0.6369
max_accuracy 0.9527 0.9369 0.9622
max_accuracy_threshold 69.5022 69.5686 116.771
max_f1 0.8559 0.7995 0.885
max_f1_threshold 133.9353 82.6656 128.6138
max_precision 0.8474 0.8165 0.8894
max_recall 0.8646 0.7832 0.8805
max_ap 0.9214 0.87 0.9475

Training Details

Training Dataset

Unnamed Dataset

  • Size: 155,651 training samples
  • Columns: text1 and text2
  • Approximate statistics based on the first 1000 samples:
    text1 text2
    type string string
    details
    • min: 5 tokens
    • mean: 231.14 tokens
    • max: 2048 tokens
    • min: 51 tokens
    • mean: 618.32 tokens
    • max: 2048 tokens
  • Samples:
    text1 text2
    === PERSON ===
    Dr. Amol Charegaonkar
    Alumnus of IIM Indore (FDP-Executive Education)
    Specialties: Data Analysis, Finance
    Pune, Maharashtra, India
    4511

    === ROLES ===
    >>> COMPANY ROLES <<<

    Company Role #1:
    Principal Consultant
    2015-04 - 2021-06
    N/A
    Maruma Consultancy
    maruma-consultancy
    Human Resources Services
    People Development Simplified
    218

    Company Role #2:
    Assistant Manager – Credit (Policy - Unsecured loans)
    2008-06 - 2009-01
    Job Responsibilities: As a Team Member of the Credit Policy & Risk function
    1.Analysis of Delinquent cases in Personal loans and Business Loans
    2.Online analysis of cases booked under Personal and Business Loans
    3.Auditing Pan India cases for credit underwriting w. r. t. Policy
    4.Analyzing and publishing a Monthly Portfolio Review for Personal Loans from the Risk Perspective like Delinquency & Bounce Trend and Credit Appraisal Process
    5.Incorporate the necessary changes required in the Lending Policy consid...
    === PERSON ===
    Rajesh Baj
    N/A
    Hyderabad, Telangana, India
    491

    === ROLES ===
    >>> COMPANY ROLES <<<

    Company Role #1:
    Sr.Officer Finance and Accounts
    2010-10 - N/A
    N/A
    JK Agri Genetics Limited
    jk-agri-genetics-limited
    Biotechnology Research
    Harvesting Happiness Through Innovations
    107873

    Company Role #2:
    Assistant Manager
    2013-10 - N/A
    N/A
    JK Agri Genetics Limited
    jk-agri-genetics-limited
    Biotechnology Research
    Harvesting Happiness Through Innovations
    107873

    Company Role #3:
    Officer- Finance and Accounts
    2007-05 - 2007-07
    Market Research in following Areas:-
    1. Bandra-Kurla complex
    2. Solitaire corporate Park Andheri
    3. Udyog Bhavan, Garegaon
    HSBC
    hsbc
    Financial Services
    N/A
    N/A

    >>> SCHOOL ROLES <<<
    No school roles listed.
    === PERSON ===
    Gabriela Menezes
    • Experiência em localização Brasil - TAXBRA, Nota Fiscal Eletrônica.
    • Conhecimento em SAP Activate e ASAP.
    • Experiência em suporte ao Cliente - AMS
    São Paulo, São Paulo, Brazil
    454

    === ROLES ===
    >>> COMPANY ROLES <<<

    Company Role #1:
    Consultora SAP SD S/4HANA
    2023 - N/A
    Atuação em - AMS
    Analise e resolução de chamados dentro do SLA estabelecido.
    Atuação nas diversas solicitações de melhoria.
    Resolução de problemas relacionados a NF-e
    Testes unitários e integrados
    Configuração de impostos e leis fiscais.
    Configuração de conta contábil.
    Resolução de erros relacionados a Pricing.
    Conhecimento e vivência no processo de Retorno Simbólico.
    Apoio as frentes MM e FI
    Apoio a equipe de projetos em configurações, testes unitários e integrados.
    ITGCON Integração e Consultoria em Sistemas
    itgcon
    IT Services and IT Consulting
    Mais que uma implementadora, somos a ITGCON consultoria.
    4116

    Company Role #2:
    Co...
    === PERSON ===
    Rafael Menezes
    Consultor funcional SD com experiência em AMS, formado em Tecnologia da Informação.
    - Principais qualificações:
    - Conhecimento em Localização Brasil, Pricing, Nota Fiscal Eletrônica e GRC.
    - Conhecimento das principais tabelas do módulo SD.
    - Conhecimento na configuração de impostos na J1BTAX
    - Conhecimento no cadastro de dados mestres de clientes e
    materiais.
    São Paulo, Brazil
    117

    === ROLES ===
    >>> COMPANY ROLES <<<

    Company Role #1:
    Consultor SAP SD Pleno
    2023-05 - N/A
    N/A
    Capgemini
    capgemini
    IT Services and IT Consulting
    Get the future you want
    6721701

    Company Role #2:
    Consultor Funcional SD JR/PL
    2021-12 - 2023-01
    - Suporte ao cliente – AMS;
    - Análise e resolução de chamados respeitando SLA;
    - Testes em cenários de vendas;
    - Configuração de impostos – J1BTAX;
    - Resolução de erros referentes a rejeição de NF-e
    - Resolução de erros referentes a CFOP
    - Resolução de erros referentes a contas contábeis
    - Criação de...
    === PERSON ===
    Anastasia Hanan, M.S., M.B.A (she/her)
    ~10 years of user research in both startups and enterprise. I am a senior researcher passionate about leading research that grounds product vision in data and emotion, highlights the user voice along with immediate/long term project risks, and optimizes for radically collaborative tactical execution through ambiguous problem spaces.

    Specialties: Complex systems research, moving between qualitative research to quantitative insights at scale, crypto, Qualtrics, innovation and strategy, process optimization, rapid insight, cross functional collaboration, making AI make sense, visual storytelling, presentations that win contests, get millions in funding, and/or create actionable product roadmaps.
    United States
    1101

    === ROLES ===
    >>> COMPANY ROLES <<<

    Company Role #1:
    UX Researcher
    2022-11 - N/A
    N/A
    United States Digital Service
    united-states-digital-service
    Government Administration
    We're mission-driven professio...
    === PERSON ===
    Stephanie Kokotakis
    N/A
    Los Angeles, California, United States
    325

    === ROLES ===
    >>> COMPANY ROLES <<<
    No company roles listed.

    >>> SCHOOL ROLES <<<
    No school roles listed.
  • Loss: MultipleNegativesSymmetricRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 47,595 evaluation samples
  • Columns: text1, text2, and label
  • Approximate statistics based on the first 1000 samples:
    text1 text2 label
    type string string int
    details
    • min: 5 tokens
    • mean: 221.5 tokens
    • max: 2048 tokens
    • min: 50 tokens
    • mean: 605.95 tokens
    • max: 2048 tokens
    • 0: ~82.40%
    • 1: ~17.60%
  • Samples:
    text1 text2 label
    Nonprofit and association management expert === PERSON ===
    Marius Strydom
    Marius Strydom has spent 20 years producing innovative research on the SA financial services industry, with a specific focus on insurance. He was rated the top SA life assurance analyst twice and the top short-term insurance analyst 5 times while working at Investec and BJM. At Bank of America Merrill Lynch, Marius led the EEMEA Financial Sector Research team to a second place in the 2013 Institutional Investor survey. During 2013 and 2014, he worked on academic research, culminating in being published in the South African Actuarial Journal. Since 2015, as part of his work with MLAX Consulting, Marius analysed and produced bespoke research on numerous SA and UK financial companies. In 2020, Marius founded Austin Lawrence Gidon and together with global partner, Edison Investment Research, they are driving the sponsored research revolution in South Africa.
    City of Cape Town, Western Cape, South Africa
    1351

    === ROLES ===
    >>> COMPANY ROLES <<<

    Company Role #...
    0
    Expert in Alienware product support === PERSON ===
    Ryan Talbot
    With over 25 years of experience in physical security, Identity management, and video surveillance, Ryan is recognized as a leader in the design and implementation of major technology solutions.

    Ryan has managed major security and IT system implementations for government, commercial, transport, data centres, gaming & casinos, retail, law enforcement and critical infrastructure environments. Ryan has worked closely with major technology brands in the design and development of hardware and software products throughout; Australia, Europe, North America and Asia.

    A leader in advanced video solutions and a former committee member of the AS/NZS 62676:5 standards, an experienced project manager and is PRINCE2 certified. He has a certificate IV in security risk management and qualifications in security electronics and sports performance.

    Ryan has also been involved in the development and design of many new technologies for IP cameras, customised ...
    0
    === PERSON ===
    Kevin Watson
    Specialties: Parametric cost estimation,
    WLC / LCC analysis,
    Logistics and supportability modelling.
    Economic LORA,
    Spares modelling,

    Tools / Applications: PRICE® TruePlanning®, EDCAS®, VMetric®
    United Kingdom
    389

    === ROLES ===
    >>> COMPANY ROLES <<<

    Company Role #1:
    Senior Consultant
    2013-09 - N/A
    N/A
    QinetiQ
    qinetiq_2
    Defense and Space Manufacturing
    Create It. Test It. Use It.
    122597

    Company Role #2:
    Support Modelling Team Lead
    2004-06 - 2011-02
    N/A
    General Dynamics UK Limited
    general-dynamics-uk-limited
    Defense and Space Manufacturing
    General Dynamics UK is one of the UK’s leading defence companies and an important supplier to the UK Ministry of Defence
    29195

    Company Role #3:
    Estimation Specialist Senior Engineer
    2011-02 - 2013-09
    N/A
    General Dynamics UK Limited
    general-dynamics-uk-limited
    Defense and Space Manufacturing
    General Dynamics UK is one of the UK’s leading defence com...
    === PERSON ===
    Kyle Biron, M.S.
    N/A
    Raleigh-Durham-Chapel Hill Area
    308

    === ROLES ===
    >>> COMPANY ROLES <<<

    Company Role #1:
    Clinical Informatics Analyst Associate
    2017-05 - 2018-05
    • Data analyst at the Grow Baby Grow biostatistics lab at Kennesaw State University
    • Statistical programming and statistical modeling using the Pediatrix Medical Group, Inc. database of over 1.2 million infant records to solve medical problems
    • Received acknowledgement in a Neonatology publication comparing BMI with other proportionality measurements
    • En route to another publication comparing popular intrauterine preterm growth curves
    • Supervisory experience by managing and collaborating with other biostatisticians
    Kennesaw State University
    kennesaw-state-university
    N/A
    We are KSU Owls. And together, we're ascending.
    167722

    Company Role #2:
    Health Data Analyst II
    2022-06 - N/A
    N/A
    Nuna Inc.
    nuna-inc
    IT Services and IT Consulting
    Driven by Data, Guided by Com...
    0
  • Loss: MultipleNegativesSymmetricRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 32
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • bf16: True
  • load_best_model_at_end: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss max_ap rec_test_evaluator_max_ap query_test_evaluator_max_ap
0 0 - - 0.4584 0.5698 0.7804
0.0051 50 1.9282 - - - -
0.0103 100 1.754 - - - -
0.0154 150 1.4681 - - - -
0.0206 200 1.1736 - - - -
0.0257 250 1.0527 - - - -
0.0308 300 0.9073 - - - -
0.0360 350 0.9088 - - - -
0.0411 400 0.8556 - - - -
0.0463 450 0.77 - - - -
0.0514 500 0.7768 - - - -
0.0565 550 0.5559 - - - -
0.0617 600 0.7102 - - - -
0.0668 650 0.6498 - - - -
0.0719 700 0.699 - - - -
0.0771 750 0.6628 - - - -
0.0822 800 0.7298 - - - -
0.0874 850 0.6278 - - - -
0.0925 900 0.6033 - - - -
0.0976 950 0.5783 - - - -
0.1028 1000 0.6187 - - - -
0.1079 1050 0.5712 - - - -
0.1131 1100 0.6375 - - - -
0.1182 1150 0.6028 - - - -
0.1233 1200 0.6227 - - - -
0.1285 1250 0.5955 - - - -
0.1336 1300 0.6402 - - - -
0.1388 1350 0.5982 - - - -
0.1439 1400 0.6085 - - - -
0.1490 1450 0.6163 - - - -
0.1542 1500 0.6304 - - - -
0.1593 1550 0.5499 - - - -
0.1645 1600 0.5648 - - - -
0.1696 1650 0.6121 - - - -
0.1747 1700 0.5499 - - - -
0.1799 1750 0.518 - - - -
0.1850 1800 0.565 - - - -
0.1902 1850 0.5966 - - - -
0.1953 1900 0.559 - - - -
0 0 - - 0.9020 - -
0.2000 1946 - 4.7301 - - -
0.2004 1950 0.6196 - - - -
0.2056 2000 0.5304 - - - -
0.2107 2050 0.5613 - - - -
0.2158 2100 0.5716 - - - -
0.2210 2150 0.5914 - - - -
0.2261 2200 0.5692 - - - -
0.2313 2250 0.5049 - - - -
0.2364 2300 0.5064 - - - -
0.2415 2350 0.5624 - - - -
0.2467 2400 0.482 - - - -
0.2518 2450 0.5529 - - - -
0.2570 2500 0.5037 - - - -
0.2621 2550 0.5702 - - - -
0.2672 2600 0.5219 - - - -
0.2724 2650 0.4623 - - - -
0.2775 2700 0.5232 - - - -
0.2827 2750 0.5867 - - - -
0.2878 2800 0.5514 - - - -
0.2929 2850 0.5288 - - - -
0.2981 2900 0.5069 - - - -
0.3032 2950 0.5761 - - - -
0.3084 3000 0.525 - - - -
0.3135 3050 0.5664 - - - -
0.3186 3100 0.6317 - - - -
0.3238 3150 0.5479 - - - -
0.3289 3200 0.553 - - - -
0.3341 3250 0.4752 - - - -
0.3392 3300 0.5127 - - - -
0.3443 3350 0.5699 - - - -
0.3495 3400 0.5394 - - - -
0.3546 3450 0.507 - - - -
0.3597 3500 0.5938 - - - -
0.3649 3550 0.539 - - - -
0.3700 3600 0.525 - - - -
0.3752 3650 0.4864 - - - -
0.3803 3700 0.5308 - - - -
0.3854 3750 0.4859 - - - -
0.3906 3800 0.513 - - - -
0.3957 3850 0.5332 - - - -
0 0 - - 0.9121 - -
0.4000 3892 - 4.7785 - - -
0.4009 3900 0.474 - - - -
0.4060 3950 0.458 - - - -
0.4111 4000 0.5066 - - - -
0.4163 4050 0.5217 - - - -
0.4214 4100 0.5381 - - - -
0.4266 4150 0.4994 - - - -
0.4317 4200 0.508 - - - -
0.4368 4250 0.4696 - - - -
0.4420 4300 0.5563 - - - -
0.4471 4350 0.4831 - - - -
0.4523 4400 0.4532 - - - -
0.4574 4450 0.5056 - - - -
0.4625 4500 0.5409 - - - -
0.4677 4550 0.5122 - - - -
0.4728 4600 0.4593 - - - -
0.4780 4650 0.5206 - - - -
0.4831 4700 0.4803 - - - -
0.4882 4750 0.478 - - - -
0.4934 4800 0.5563 - - - -
0.4985 4850 0.5191 - - - -
0.5036 4900 0.4981 - - - -
0.5088 4950 0.5075 - - - -
0.5139 5000 0.5035 - - - -
0.5191 5050 0.4375 - - - -
0.5242 5100 0.515 - - - -
0.5293 5150 0.4386 - - - -
0.5345 5200 0.4757 - - - -
0.5396 5250 0.4715 - - - -
0.5448 5300 0.452 - - - -
0.5499 5350 0.4789 - - - -
0.5550 5400 0.4839 - - - -
0.5602 5450 0.472 - - - -
0.5653 5500 0.4779 - - - -
0.5705 5550 0.4804 - - - -
0.5756 5600 0.4778 - - - -
0.5807 5650 0.4542 - - - -
0.5859 5700 0.5099 - - - -
0.5910 5750 0.5326 - - - -
0.5962 5800 0.4859 - - - -
0 0 - - 0.9162 - -
0.6001 5838 - 4.7525 - - -
0.6013 5850 0.4558 - - - -
0.6064 5900 0.4429 - - - -
0.6116 5950 0.4862 - - - -
0.6167 6000 0.453 - - - -
0.6219 6050 0.4795 - - - -
0.6270 6100 0.4835 - - - -
0.6321 6150 0.4517 - - - -
0.6373 6200 0.4654 - - - -
0.6424 6250 0.4076 - - - -
0.6475 6300 0.4213 - - - -
0.6527 6350 0.5258 - - - -
0.6578 6400 0.4392 - - - -
0.6630 6450 0.467 - - - -
0.6681 6500 0.4382 - - - -
0.6732 6550 0.4254 - - - -
0.6784 6600 0.4647 - - - -
0.6835 6650 0.4333 - - - -
0.6887 6700 0.5067 - - - -
0.6938 6750 0.4584 - - - -
0.6989 6800 0.4843 - - - -
0.7041 6850 0.441 - - - -
0.7092 6900 0.4461 - - - -
0.7144 6950 0.5262 - - - -
0.7195 7000 0.463 - - - -
0.7246 7050 0.4917 - - - -
0.7298 7100 0.4288 - - - -
0.7349 7150 0.4572 - - - -
0.7401 7200 0.523 - - - -
0.7452 7250 0.4868 - - - -
0.7503 7300 0.4292 - - - -
0.7555 7350 0.3998 - - - -
0.7606 7400 0.4515 - - - -
0.7658 7450 0.5028 - - - -
0.7709 7500 0.4417 - - - -
0.7760 7550 0.4908 - - - -
0.7812 7600 0.4344 - - - -
0.7863 7650 0.4956 - - - -
0.7914 7700 0.3898 - - - -
0.7966 7750 0.4512 - - - -
0 0 - - 0.9214 - -
0.8001 7784 - 4.7145 - - -
0.8017 7800 0.5104 - - - -
0.8069 7850 0.4543 - - - -
0.8120 7900 0.4041 - - - -
0.8171 7950 0.472 - - - -
0.8223 8000 0.4535 - - - -
0.8274 8050 0.4412 - - - -
0.8326 8100 0.4776 - - - -
0.8377 8150 0.3992 - - - -
0.8428 8200 0.4332 - - - -
0.8480 8250 0.4767 - - - -
0.8531 8300 0.453 - - - -
0.8583 8350 0.4321 - - - -
0.8634 8400 0.4654 - - - -
0.8685 8450 0.3688 - - - -
0.8737 8500 0.4515 - - - -
0.8788 8550 0.4693 - - - -
0.8840 8600 0.404 - - - -
0.8891 8650 0.5471 - - - -
0.8942 8700 0.5301 - - - -
0.8994 8750 0.4714 - - - -
0.9045 8800 0.4863 - - - -
0.9097 8850 0.4712 - - - -
0.9148 8900 0.4446 - - - -
0.9199 8950 0.41 - - - -
0.9251 9000 0.4175 - - - -
0.9302 9050 0.4678 - - - -
0.9353 9100 0.4308 - - - -
0.9405 9150 0.4532 - - - -
0.9456 9200 0.4643 - - - -
0.9508 9250 0.4197 - - - -
0.9559 9300 0.4488 - - - -
0.9610 9350 0.5365 - - - -
0.9662 9400 0.475 - - - -
0.9713 9450 0.438 - - - -
0.9765 9500 0.3648 - - - -
0.9816 9550 0.4277 - - - -
0.9867 9600 0.4721 - - - -
0.9919 9650 0.4603 - - - -
0.9970 9700 0.3954 - - - -
0 0 - - 0.9214 0.8700 0.9475
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.12.8
  • Sentence Transformers: 3.4.1
  • Transformers: 4.48.1
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
10
Safetensors
Model size
32.7M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for borgcollectivegmbh/jina-embeddings-v2-small-en_linkedin_profile_model_run1__modified_config

Finetuned
(4)
this model

Evaluation results