metadata
library_name: peft
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
datasets:
- biobert_json
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: roberta-large-ner-qlorafinetune-runs-colab
results: []
roberta-large-ner-qlorafinetune-runs-colab
This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the biobert_json dataset. It achieves the following results on the evaluation set:
- Loss: 0.0747
- Precision: 0.9341
- Recall: 0.9552
- F1: 0.9446
- Accuracy: 0.9805
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 1820
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
2.3591 | 0.0654 | 20 | 1.1618 | 0.0 | 0.0 | 0.0 | 0.7196 |
1.016 | 0.1307 | 40 | 0.5998 | 0.5713 | 0.5601 | 0.5657 | 0.8528 |
0.5032 | 0.1961 | 60 | 0.2553 | 0.8199 | 0.8139 | 0.8169 | 0.9357 |
0.3019 | 0.2614 | 80 | 0.1630 | 0.8376 | 0.8817 | 0.8591 | 0.9522 |
0.2149 | 0.3268 | 100 | 0.1543 | 0.8341 | 0.9190 | 0.8745 | 0.9557 |
0.2131 | 0.3922 | 120 | 0.1331 | 0.8587 | 0.9157 | 0.8863 | 0.9592 |
0.1722 | 0.4575 | 140 | 0.1217 | 0.9150 | 0.8981 | 0.9065 | 0.9660 |
0.1646 | 0.5229 | 160 | 0.1060 | 0.8982 | 0.9465 | 0.9217 | 0.9711 |
0.1663 | 0.5882 | 180 | 0.1212 | 0.8900 | 0.9454 | 0.9169 | 0.9684 |
0.1316 | 0.6536 | 200 | 0.0979 | 0.9071 | 0.9409 | 0.9237 | 0.9713 |
0.1342 | 0.7190 | 220 | 0.0846 | 0.9123 | 0.9382 | 0.9251 | 0.9743 |
0.1334 | 0.7843 | 240 | 0.0919 | 0.9141 | 0.9491 | 0.9313 | 0.9743 |
0.1124 | 0.8497 | 260 | 0.0927 | 0.9143 | 0.9405 | 0.9272 | 0.9735 |
0.124 | 0.9150 | 280 | 0.0989 | 0.9047 | 0.9457 | 0.9247 | 0.9710 |
0.1295 | 0.9804 | 300 | 0.0898 | 0.9121 | 0.9302 | 0.9211 | 0.9730 |
0.1102 | 1.0458 | 320 | 0.0894 | 0.9060 | 0.9417 | 0.9235 | 0.9730 |
0.0943 | 1.1111 | 340 | 0.1187 | 0.9132 | 0.9434 | 0.9281 | 0.9722 |
0.1055 | 1.1765 | 360 | 0.1075 | 0.8977 | 0.9473 | 0.9218 | 0.9690 |
0.1003 | 1.2418 | 380 | 0.0876 | 0.9193 | 0.9471 | 0.9330 | 0.9754 |
0.1073 | 1.3072 | 400 | 0.0774 | 0.9259 | 0.9526 | 0.9391 | 0.9784 |
0.1176 | 1.3725 | 420 | 0.0986 | 0.8830 | 0.9363 | 0.9089 | 0.9692 |
0.1028 | 1.4379 | 440 | 0.0778 | 0.9318 | 0.9504 | 0.9410 | 0.9785 |
0.0953 | 1.5033 | 460 | 0.0747 | 0.9294 | 0.9527 | 0.9409 | 0.9783 |
0.1023 | 1.5686 | 480 | 0.0757 | 0.9263 | 0.9532 | 0.9395 | 0.9779 |
0.0865 | 1.6340 | 500 | 0.0884 | 0.9057 | 0.9469 | 0.9258 | 0.9738 |
0.0744 | 1.6993 | 520 | 0.0889 | 0.9045 | 0.9654 | 0.9339 | 0.9752 |
0.0779 | 1.7647 | 540 | 0.0792 | 0.9176 | 0.9402 | 0.9288 | 0.9761 |
0.0946 | 1.8301 | 560 | 0.0821 | 0.9139 | 0.9548 | 0.9339 | 0.9761 |
0.0966 | 1.8954 | 580 | 0.1007 | 0.9029 | 0.9552 | 0.9283 | 0.9715 |
0.098 | 1.9608 | 600 | 0.0960 | 0.9137 | 0.9460 | 0.9296 | 0.9737 |
0.0829 | 2.0261 | 620 | 0.0859 | 0.9232 | 0.9514 | 0.9371 | 0.9766 |
0.077 | 2.0915 | 640 | 0.0821 | 0.9196 | 0.9575 | 0.9382 | 0.9768 |
0.0598 | 2.1569 | 660 | 0.0756 | 0.9226 | 0.9490 | 0.9356 | 0.9771 |
0.0864 | 2.2222 | 680 | 0.0768 | 0.9240 | 0.9560 | 0.9397 | 0.9777 |
0.0836 | 2.2876 | 700 | 0.0846 | 0.9175 | 0.9577 | 0.9372 | 0.9762 |
0.0629 | 2.3529 | 720 | 0.0706 | 0.9355 | 0.9513 | 0.9433 | 0.9796 |
0.0667 | 2.4183 | 740 | 0.0781 | 0.9273 | 0.9527 | 0.9398 | 0.9779 |
0.09 | 2.4837 | 760 | 0.0728 | 0.9297 | 0.9615 | 0.9453 | 0.9802 |
0.0718 | 2.5490 | 780 | 0.0772 | 0.9338 | 0.9609 | 0.9471 | 0.9808 |
0.0765 | 2.6144 | 800 | 0.0712 | 0.9403 | 0.9558 | 0.9480 | 0.9810 |
0.0632 | 2.6797 | 820 | 0.0759 | 0.9377 | 0.9512 | 0.9444 | 0.9795 |
0.0667 | 2.7451 | 840 | 0.0787 | 0.9168 | 0.9484 | 0.9323 | 0.9774 |
0.0652 | 2.8105 | 860 | 0.0754 | 0.9320 | 0.9587 | 0.9452 | 0.9804 |
0.0704 | 2.8758 | 880 | 0.0715 | 0.9335 | 0.9576 | 0.9454 | 0.9802 |
0.0583 | 2.9412 | 900 | 0.0744 | 0.9227 | 0.9587 | 0.9404 | 0.9789 |
0.0589 | 3.0065 | 920 | 0.0710 | 0.9334 | 0.9610 | 0.9470 | 0.9810 |
0.0489 | 3.0719 | 940 | 0.0720 | 0.9342 | 0.9583 | 0.9461 | 0.9809 |
0.0545 | 3.1373 | 960 | 0.0886 | 0.9170 | 0.9551 | 0.9357 | 0.9765 |
0.0491 | 3.2026 | 980 | 0.0738 | 0.9353 | 0.9551 | 0.9451 | 0.9802 |
0.0563 | 3.2680 | 1000 | 0.0741 | 0.9308 | 0.9544 | 0.9424 | 0.9794 |
0.0527 | 3.3333 | 1020 | 0.0755 | 0.9257 | 0.9525 | 0.9389 | 0.9785 |
0.0525 | 3.3987 | 1040 | 0.0800 | 0.9218 | 0.9655 | 0.9432 | 0.9790 |
0.0599 | 3.4641 | 1060 | 0.0838 | 0.9190 | 0.9543 | 0.9363 | 0.9777 |
0.0474 | 3.5294 | 1080 | 0.0770 | 0.9267 | 0.9497 | 0.9381 | 0.9790 |
0.0508 | 3.5948 | 1100 | 0.0821 | 0.9293 | 0.9577 | 0.9433 | 0.9780 |
0.048 | 3.6601 | 1120 | 0.0739 | 0.9360 | 0.9527 | 0.9443 | 0.9802 |
0.0592 | 3.7255 | 1140 | 0.0733 | 0.9374 | 0.9611 | 0.9491 | 0.9810 |
0.0546 | 3.7908 | 1160 | 0.0721 | 0.9389 | 0.9575 | 0.9481 | 0.9814 |
0.0668 | 3.8562 | 1180 | 0.0773 | 0.9278 | 0.9581 | 0.9427 | 0.9792 |
0.0626 | 3.9216 | 1200 | 0.0816 | 0.9280 | 0.9567 | 0.9421 | 0.9783 |
0.0664 | 3.9869 | 1220 | 0.0720 | 0.9332 | 0.9577 | 0.9453 | 0.9806 |
0.0465 | 4.0523 | 1240 | 0.0743 | 0.9350 | 0.9579 | 0.9463 | 0.9804 |
0.0389 | 4.1176 | 1260 | 0.0742 | 0.9279 | 0.9583 | 0.9429 | 0.9802 |
0.0412 | 4.1830 | 1280 | 0.0720 | 0.9382 | 0.9572 | 0.9476 | 0.9816 |
0.0451 | 4.2484 | 1300 | 0.0749 | 0.9327 | 0.9514 | 0.9419 | 0.9799 |
0.0455 | 4.3137 | 1320 | 0.0732 | 0.9399 | 0.9494 | 0.9446 | 0.9807 |
0.0474 | 4.3791 | 1340 | 0.0731 | 0.9349 | 0.9569 | 0.9458 | 0.9805 |
0.0414 | 4.4444 | 1360 | 0.0749 | 0.9312 | 0.9558 | 0.9434 | 0.9800 |
0.0338 | 4.5098 | 1380 | 0.0774 | 0.9305 | 0.9576 | 0.9438 | 0.9799 |
0.0495 | 4.5752 | 1400 | 0.0774 | 0.9286 | 0.9501 | 0.9392 | 0.9794 |
0.0442 | 4.6405 | 1420 | 0.0751 | 0.9370 | 0.9611 | 0.9489 | 0.9813 |
0.0376 | 4.7059 | 1440 | 0.0819 | 0.9255 | 0.9532 | 0.9392 | 0.9778 |
0.0466 | 4.7712 | 1460 | 0.0768 | 0.9373 | 0.9566 | 0.9468 | 0.9805 |
0.0407 | 4.8366 | 1480 | 0.0763 | 0.9359 | 0.9574 | 0.9465 | 0.9803 |
0.0419 | 4.9020 | 1500 | 0.0769 | 0.9310 | 0.9570 | 0.9438 | 0.9796 |
0.0521 | 4.9673 | 1520 | 0.0743 | 0.9336 | 0.9522 | 0.9428 | 0.9796 |
0.0356 | 5.0327 | 1540 | 0.0793 | 0.9271 | 0.9544 | 0.9406 | 0.9788 |
0.0359 | 5.0980 | 1560 | 0.0744 | 0.9386 | 0.9574 | 0.9479 | 0.9807 |
0.0411 | 5.1634 | 1580 | 0.0749 | 0.9354 | 0.9592 | 0.9472 | 0.9806 |
0.036 | 5.2288 | 1600 | 0.0764 | 0.9322 | 0.9518 | 0.9419 | 0.9799 |
0.0316 | 5.2941 | 1620 | 0.0777 | 0.9287 | 0.9531 | 0.9408 | 0.9788 |
0.0314 | 5.3595 | 1640 | 0.0756 | 0.9330 | 0.9568 | 0.9447 | 0.9802 |
0.0321 | 5.4248 | 1660 | 0.0727 | 0.9405 | 0.9569 | 0.9486 | 0.9815 |
0.0427 | 5.4902 | 1680 | 0.0728 | 0.9381 | 0.9570 | 0.9474 | 0.9810 |
0.031 | 5.5556 | 1700 | 0.0718 | 0.9414 | 0.9573 | 0.9493 | 0.9817 |
0.033 | 5.6209 | 1720 | 0.0752 | 0.9324 | 0.9562 | 0.9442 | 0.9800 |
0.0342 | 5.6863 | 1740 | 0.0742 | 0.9367 | 0.9545 | 0.9455 | 0.9804 |
0.0348 | 5.7516 | 1760 | 0.0748 | 0.9328 | 0.9554 | 0.9439 | 0.9800 |
0.0295 | 5.8170 | 1780 | 0.0750 | 0.9326 | 0.9561 | 0.9442 | 0.9802 |
0.035 | 5.8824 | 1800 | 0.0752 | 0.9328 | 0.9560 | 0.9443 | 0.9803 |
0.0285 | 5.9477 | 1820 | 0.0747 | 0.9341 | 0.9552 | 0.9446 | 0.9805 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.20.3