|
--- |
|
license: cc-by-4.0 |
|
library_name: scvi-tools |
|
tags: |
|
- biology |
|
- genomics |
|
- single-cell |
|
- model_cls_name:SCANVI |
|
- modality:rna |
|
- annotated:True |
|
--- |
|
|
|
# Description |
|
|
|
Mouse preimplantation development model spanning early stages of development. The |
|
model was trained utilizing single‐cell ANnotation using Variational Inference |
|
(scANVI, [Xu et al., 2021]) implemented in [scvi-tools]. In short, scANVI raw |
|
single-cell RNA sequencing (scRNA-seq) count matrix - cell by gene, where values |
|
represent gene expression measured by counting number of transcribed RNA. |
|
|
|
# Model Training |
|
|
|
- [raw dataset](https://zenodo.org/records/13749348/files/01_mouse_reprocessed.h5ad) |
|
- [notebook analysis](https://github.com/brickmanlab/proks-salehin-et-al/blob/master/notebooks/15_mouse_scANVI_fix.ipynb) |
|
|
|
# Metrics |
|
|
|
Cell type (`ct`) prediction |
|
|
|
| Metric | Score | |
|
|-------------------|---------------------| |
|
| Accuracy score | 0.9126746506986028 | |
|
| Balanced accuracy | 0.9572872718187365 | |
|
| F1 (micro) | 0.9126746506986028 | |
|
| F1 (macro) | 0.9201654923575322 | |
|
|
|
# Model parameters |
|
|
|
Below we provide settings for scANVI setup |
|
|
|
`lvae.init_params_["non_kwargs"]` |
|
|
|
```json |
|
{ |
|
"n_hidden": 128, |
|
"n_latent": 10, |
|
"n_layers": 2, |
|
"dropout_rate": 0.1, |
|
"dispersion": "gene", |
|
"gene_likelihood": "nb", |
|
"linear_classifier": false |
|
} |
|
``` |
|
|
|
`lvae.adata_manager.registry['setup_args']` |
|
|
|
```json |
|
{ |
|
"labels_key": "ct", |
|
"unlabeled_category": "Unknown", |
|
"layer": "counts", |
|
"batch_key": "batch", |
|
"size_factor_key": null, |
|
"categorical_covariate_keys": null, |
|
"continuous_covariate_keys": null |
|
} |
|
``` |
|
|
|
# References |
|
|
|
Proks, M., Salehin, N. & Brickman, J.M. Deep learning-based models for preimplantation mouse and human embryos based on single-cell RNA sequencing. Nat Methods 22, 207–216 (2025). [https://doi.org/10.1038/s41592-024-02511-3](https://doi.org/10.1038/s41592-024-02511-3) |
|
|
|
[Xu et al., 2021]: https://www.embopress.org/doi/full/10.15252/msb.20209620 |
|
[scvi-tools]: http://scvi-tools.org |
|
|