SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("brilan/procedure-tool-matching_10_epochs")
# Run inference
sentences = [
'list running processes',
'Displays information about services and drivers on a local or remote computer.',
'Displays the directory structure of a path or of the disk in a drive graphically.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
dev
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.8614 |
dot_accuracy | 0.1386 |
manhattan_accuracy | 0.856 |
euclidean_accuracy | 0.8614 |
max_accuracy | 0.8614 |
Triplet
- Dataset:
dev
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 1.0 |
dot_accuracy | 0.0 |
manhattan_accuracy | 1.0 |
euclidean_accuracy | 1.0 |
max_accuracy | 1.0 |
Triplet
- Dataset:
test
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 1.0 |
dot_accuracy | 0.0 |
manhattan_accuracy | 1.0 |
euclidean_accuracy | 1.0 |
max_accuracy | 1.0 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 7,385 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 5 tokens
- mean: 9.6 tokens
- max: 17 tokens
- min: 5 tokens
- mean: 18.53 tokens
- max: 47 tokens
- min: 5 tokens
- mean: 17.9 tokens
- max: 57 tokens
- Samples:
anchor positive negative added user accounts to the User and Admin groups
use to create a new local user account on a Windows system.
Adds a new subkey or entry to the registry.
get cached credentials
manipulate privilege on process.
Use to display a list of computers and shared resources on a network.
used compromised domain accounts to gain access to the target environment
allows users to execute commands remotely on target systems using various methods including WMI, SMB, SSH, RDP, and PowerShell
Copies files and directories including subdirectories.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 1,847 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 5 tokens
- mean: 9.74 tokens
- max: 17 tokens
- min: 5 tokens
- mean: 18.21 tokens
- max: 47 tokens
- min: 5 tokens
- mean: 18.3 tokens
- max: 57 tokens
- Samples:
anchor positive negative obtain information about the domain
It retrieves a list of current network connections.
Saves a copy of specified subkeys, entries, and values of the registry in a specified file.
obtain credentials from Vault files
retrieve stored passwords from various software and operating systems
allows users to execute commands remotely on target systems using various methods including WMI, SMB, SSH, RDP, and PowerShell
obtain information about the domain
Get user name and group information along with the respective security identifiers (SID) claims privileges logon identifier (logon ID) for the current user on the local system.
Creates a new shadow copy of a specified volume.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 10warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | dev_cosine_accuracy | dev_max_accuracy | test_cosine_accuracy |
---|---|---|---|---|---|---|
0 | 0 | - | - | 0.8614 | 0.8614 | - |
0.2165 | 100 | 2.3461 | 1.3114 | 0.9995 | - | - |
0.4329 | 200 | 1.5881 | 1.2268 | 0.9995 | - | - |
0.6494 | 300 | 1.5293 | 1.2106 | 0.9995 | - | - |
0.8658 | 400 | 1.4955 | 1.1909 | 1.0 | - | - |
1.0823 | 500 | 0.8778 | 1.2624 | 0.9978 | - | - |
1.2987 | 600 | 0.0 | 1.2644 | 0.9989 | - | - |
1.2143 | 700 | 1.4556 | 1.1650 | 1.0 | - | - |
1.4307 | 800 | 1.4347 | 1.1479 | 1.0 | - | - |
1.6472 | 900 | 1.4549 | 1.1127 | 1.0 | - | - |
1.8636 | 1000 | 1.4315 | 1.1446 | 1.0 | - | - |
2.0801 | 1100 | 0.8624 | 1.1487 | 1.0 | - | - |
2.2965 | 1200 | 0.0004 | 1.1511 | 0.9984 | - | - |
2.2121 | 1300 | 1.3961 | 1.1081 | 1.0 | - | - |
2.4286 | 1400 | 1.4033 | 1.1076 | 1.0 | - | - |
2.6450 | 1500 | 1.4211 | 1.1022 | 1.0 | - | - |
2.8615 | 1600 | 1.4044 | 1.1364 | 1.0 | - | - |
3.0779 | 1700 | 0.864 | 1.1135 | 1.0 | - | - |
3.2944 | 1800 | 0.0005 | 1.1156 | 1.0 | - | - |
3.2100 | 1900 | 1.353 | 1.0914 | 1.0 | - | - |
3.4264 | 2000 | 1.3805 | 1.0958 | 1.0 | - | - |
3.6429 | 2100 | 1.4068 | 1.0925 | 1.0 | - | - |
3.8593 | 2200 | 1.3874 | 1.1184 | 1.0 | - | - |
4.0758 | 2300 | 0.8734 | 1.0992 | 1.0 | - | - |
4.2922 | 2400 | 0.0011 | 1.1007 | 1.0 | - | - |
4.2078 | 2500 | 1.3287 | 1.0853 | 1.0 | - | - |
4.4242 | 2600 | 1.3691 | 1.0944 | 1.0 | - | - |
4.6407 | 2700 | 1.4026 | 1.0906 | 1.0 | - | - |
4.8571 | 2800 | 1.3816 | 1.0926 | 1.0 | - | - |
5.0736 | 2900 | 0.8775 | 1.0915 | 1.0 | - | - |
5.2900 | 3000 | 0.0007 | 1.0924 | 1.0 | - | - |
5.2056 | 3100 | 1.3095 | 1.0838 | 1.0 | - | - |
5.4221 | 3200 | 1.3669 | 1.0875 | 1.0 | - | - |
5.6385 | 3300 | 1.389 | 1.0869 | 1.0 | - | - |
5.8550 | 3400 | 1.3741 | 1.0835 | 1.0 | - | - |
6.0714 | 3500 | 0.8852 | 1.0864 | 1.0 | - | - |
6.2879 | 3600 | 0.0005 | 1.0866 | 1.0 | - | - |
6.2035 | 3700 | 1.2937 | 1.0793 | 1.0 | - | - |
6.4199 | 3800 | 1.3618 | 1.0852 | 1.0 | - | - |
6.6364 | 3900 | 1.3848 | 1.0847 | 1.0 | - | - |
6.8528 | 4000 | 1.3722 | 1.0799 | 1.0 | - | - |
7.0693 | 4100 | 0.8995 | 1.0827 | 1.0 | - | - |
7.2857 | 4200 | 0.0006 | 1.0826 | 1.0 | - | - |
7.2013 | 4300 | 1.2766 | 1.0775 | 1.0 | - | - |
7.4177 | 4400 | 1.3559 | 1.0791 | 1.0 | - | - |
7.6342 | 4500 | 1.3806 | 1.0793 | 1.0 | - | - |
7.8506 | 4600 | 1.3636 | 1.0788 | 1.0 | - | - |
7.8939 | 4620 | - | - | - | - | 1.0 |
Framework Versions
- Python: 3.11.5
- Sentence Transformers: 3.1.0
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 1.0.0
- Datasets: 3.0.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 85
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for brilan/procedure-tool-matching_10_epochs
Base model
sentence-transformers/all-mpnet-base-v2Evaluation results
- Cosine Accuracy on devself-reported0.861
- Dot Accuracy on devself-reported0.139
- Manhattan Accuracy on devself-reported0.856
- Euclidean Accuracy on devself-reported0.861
- Max Accuracy on devself-reported0.861
- Cosine Accuracy on devself-reported1.000
- Dot Accuracy on devself-reported0.000
- Manhattan Accuracy on devself-reported1.000
- Euclidean Accuracy on devself-reported1.000
- Max Accuracy on devself-reported1.000