metadata
base_model: sentence-transformers/all-mpnet-base-v2
library_name: sentence-transformers
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6462
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: gain successful RDP authentication
sentences:
- Creates or Schedules a task.
- >-
Execute processes on other systems complete with full interactivity for
console applications without having to manually install client software.
- >-
allows users to execute commands remotely on target systems using
various methods including WMI, SMB, SSH, RDP, and PowerShell
- source_sentence: collect and stage the informaiton in AD
sentences:
- >-
Displays the directory structure of a path or of the disk in a drive
graphically.
- >-
Get user name and group information along with the respective security
identifiers (SID) claims privileges logon identifier (logon ID) for the
current user on the local system.
- retrieve stored passwords from various software and operating systems
- source_sentence: Download files or binary for further usage
sentences:
- >-
allows users to extract sensitive credential information from the Local
Security Authority (LSA) on Windows systems.
- Transfer data from or to a server using URLs.
- >-
Displays and modifies entries in the Address Resolution Protocol (ARP)
cache.
- source_sentence: collect and stage the informaiton in AD
sentences:
- Adds displays or modifies global groups in domains.
- Gets the local security groups.
- >-
Displays the directory structure of a path or of the disk in a drive
graphically.
- source_sentence: Modify Registry of Current User Profile
sentences:
- Stops one or more running services.
- Allows users to manage local and domain user accounts.
- >-
Saves a copy of specified subkeys, entries, and values of the registry
in a specified file.
model-index:
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
results:
- task:
type: triplet
name: Triplet
dataset:
name: dev
type: dev
metrics:
- type: cosine_accuracy
value: 1
name: Cosine Accuracy
- type: dot_accuracy
value: 0
name: Dot Accuracy
- type: manhattan_accuracy
value: 1
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 1
name: Euclidean Accuracy
- type: max_accuracy
value: 1
name: Max Accuracy
- task:
type: triplet
name: Triplet
dataset:
name: test
type: test
metrics:
- type: cosine_accuracy
value: 1
name: Cosine Accuracy
- type: dot_accuracy
value: 0
name: Dot Accuracy
- type: manhattan_accuracy
value: 1
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 1
name: Euclidean Accuracy
- type: max_accuracy
value: 1
name: Max Accuracy
SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("brilan/procedure-tool-matching_3_epochs")
# Run inference
sentences = [
'Modify Registry of Current User Profile',
'Saves a copy of specified subkeys, entries, and values of the registry in a specified file.',
'Stops one or more running services.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
dev
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 1.0 |
dot_accuracy | 0.0 |
manhattan_accuracy | 1.0 |
euclidean_accuracy | 1.0 |
max_accuracy | 1.0 |
Triplet
- Dataset:
test
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 1.0 |
dot_accuracy | 0.0 |
manhattan_accuracy | 1.0 |
euclidean_accuracy | 1.0 |
max_accuracy | 1.0 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,462 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 5 tokens
- mean: 9.62 tokens
- max: 17 tokens
- min: 5 tokens
- mean: 18.14 tokens
- max: 47 tokens
- min: 5 tokens
- mean: 17.66 tokens
- max: 57 tokens
- Samples:
anchor positive negative used compromised domain accounts to gain access to the target environment
allows users to execute commands remotely on target systems using various methods including WMI, SMB, SSH, RDP, and PowerShell
Displays information about user sessions on a Remote Desktop Session Host server.
use default credentials to connect to IPC$ shares on remote machines
Execute commands on remote targets via Remote Desktop Protocol (RDP) without requiring a graphical user interface (GUI).
It provides functionality to view create modify and delete user accounts directly from the command prompt.
gain access to the server via SSH
allow users to connect to RDP servers
allows administrators to manage and configure audit policies for the system and provides the ability to view, set, and modify the audit policies that control what events are logged by the Windows security auditing subsystem.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 2,770 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 5 tokens
- mean: 9.48 tokens
- max: 17 tokens
- min: 5 tokens
- mean: 18.31 tokens
- max: 47 tokens
- min: 5 tokens
- mean: 18.21 tokens
- max: 57 tokens
- Samples:
anchor positive negative Disable Windows Services related to security products
stop running service
Creates lists and deletes stored user names and passwords or credentials.
Get user information
Gets the local security groups.
Copy files from source to dest between local and remote machine skipping identical files.
used pass the hash for lateral movement
Execute processes on other systems complete with full interactivity for console applications without having to manually install client software.
Extracts passwords keys,pin,codes,tickets from the memory of lsass
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | dev_cosine_accuracy | test_cosine_accuracy |
---|---|---|---|---|---|
0 | 0 | - | - | 0.8596 | - |
0.2475 | 100 | 2.0428 | 1.3753 | 0.9989 | - |
0.4950 | 200 | 1.5299 | 1.2361 | 1.0 | - |
0.7426 | 300 | 1.4871 | 1.1853 | 1.0 | - |
0.9901 | 400 | 1.4612 | 1.1707 | 1.0 | - |
1.2376 | 500 | 0.0287 | 1.2190 | 1.0 | - |
1.1584 | 600 | 0.9192 | 1.1738 | 1.0 | - |
1.4059 | 700 | 1.4131 | 1.1708 | 1.0 | - |
1.6535 | 800 | 1.4254 | 1.1428 | 1.0 | - |
1.9010 | 900 | 1.3977 | 1.1373 | 1.0 | - |
2.1485 | 1000 | 0.5379 | 1.1419 | 1.0 | - |
2.0693 | 1100 | 0.386 | 1.1306 | 1.0 | - |
2.3168 | 1200 | 1.3708 | 1.1260 | 1.0 | - |
2.3465 | 1212 | - | - | - | 1.0 |
Framework Versions
- Python: 3.11.5
- Sentence Transformers: 3.1.0
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 1.0.0
- Datasets: 3.0.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}