metadata
tags:
- spacy
- token-classification
language:
- en
license: mit
model-index:
- name: en_docusco_spacy_cd
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.7896141572
- name: NER Recall
type: recall
value: 0.7757775447
- name: NER F Score
type: f_score
value: 0.7826346995
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9734866573
English pipeline for part-of-speech and rhetorical tagging using a smaller 'common dictionary'.
Feature | Description |
---|---|
Name | en_docusco_spacy_cd |
Version | 1.2 |
spaCy | >=3.5.0,<3.6.0 |
Default Pipeline | tok2vec , tagger , ner |
Components | tok2vec , tagger , ner |
Vectors | 0 keys, 0 unique vectors (0 dimensions) |
Sources | n/a |
License | MIT |
Author | David Brown |
Label Scheme
View label scheme (270 labels for 2 components)
Component | Labels |
---|---|
tagger |
APPGE , AT , AT1 , BCL21 , BCL22 , CC , CCB , CS , CS21 , CS22 , CS31 , CS32 , CS33 , CS41 , CS42 , CS43 , CS44 , CSA , CSN , CST , CSW , CSW31 , CSW32 , CSW33 , DA , DA1 , DA2 , DAR , DAT , DB , DB2 , DD , DD1 , DD2 , DDQ , DDQGE , DDQV , DDQV31 , DDQV32 , DDQV33 , EX , FO , FU , FW , GE , IF , II , II21 , II22 , II31 , II32 , II33 , II41 , II42 , II43 , II44 , IO , IW , JJ , JJ21 , JJ22 , JJ31 , JJ32 , JJ33 , JJR , JJT , JK , MC , MC1 , MC2 , MC221 , MC222 , MCMC , MD , MF , ND1 , NN , NN1 , NN121 , NN122 , NN131 , NN132 , NN133 , NN141 , NN142 , NN143 , NN144 , NN2 , NN21 , NN22 , NN221 , NN222 , NN231 , NN232 , NN233 , NN31 , NN33 , NNA , NNB , NNL1 , NNL2 , NNO , NNO2 , NNT1 , NNT2 , NNU , NNU1 , NNU2 , NNU21 , NNU22 , NP , NP1 , NP2 , NPD1 , NPD2 , NPM1 , NPM2 , PN , PN1 , PN121 , PN122 , PN21 , PN22 , PNQO , PNQS , PNQS31 , PNQS32 , PNQS33 , PNQV , PNX1 , PPGE , PPH1 , PPHO1 , PPHO2 , PPHS1 , PPHS2 , PPIO1 , PPIO2 , PPIS1 , PPIS2 , PPX1 , PPX121 , PPX122 , PPX2 , PPX221 , PPX222 , PPY , RA , RA21 , RA22 , REX , REX21 , REX22 , REX41 , REX42 , REX43 , REX44 , RG , RG21 , RG22 , RGQ , RGQV , RGQV31 , RGQV32 , RGQV33 , RGR , RGT , RL , RL21 , RL22 , RP , RPK , RR , RR21 , RR22 , RR31 , RR32 , RR33 , RR41 , RR42 , RR43 , RR44 , RR51 , RR52 , RR53 , RR54 , RR55 , RRQ , RRQV , RRQV31 , RRQV32 , RRQV33 , RRR , RRT , RT , RT21 , RT22 , RT31 , RT32 , RT33 , RT41 , RT42 , RT43 , RT44 , TO , UH , UH21 , UH22 , UH31 , UH32 , UH33 , VB0 , VBDR , VBDZ , VBG , VBI , VBM , VBN , VBR , VBZ , VD0 , VDD , VDG , VDI , VDN , VDZ , VH0 , VHD , VHG , VHI , VHN , VHZ , VM , VM21 , VM22 , VMK , VV0 , VVD , VVG , VVGK , VVI , VVN , VVNK , VVZ , XX , Y , ZZ1 , ZZ2 , ZZ221 , ZZ222 |
ner |
ActorsAbstractions , ActorsFirstPerson , ActorsPeople , ActorsPublicEntities , CitationAuthority , CitationControversy , CitationHedged , CitationNeutral , ConfidenceHedged , ConfidenceHigh , OrganizationNarrative , OrganizationReasoning , PlanningFuture , PlanningStrategy , SentimentNegative , SentimentPositive , SignpostingAcademicWritingMoves , SignpostingMetadiscourse , StanceEmphatic , StanceModerated |
Accuracy
Type | Score |
---|---|
TAG_ACC |
97.35 |
ENTS_F |
78.26 |
ENTS_P |
78.96 |
ENTS_R |
77.58 |
TOK2VEC_LOSS |
5937424.94 |
TAGGER_LOSS |
1136040.49 |
NER_LOSS |
3941726.32 |