English pipeline for part-of-speech and rhetorical tagging using a smaller 'common dictionary'.

Feature Description
Name en_docusco_spacy_cd_trf
Version 1.3
spaCy >=3.7.4,<3.8.0
Default Pipeline transformer, tagger, ner
Components transformer, tagger, ner
Vectors 0 keys, 0 unique vectors (0 dimensions)
Sources n/a
License MIT
Author David Brown

Label Scheme

View label scheme (289 labels for 2 components)
Component Labels
tagger APPGE, AT, AT1, BCL21, BCL22, CC, CCB, CS, CS21, CS22, CS31, CS32, CS33, CS41, CS42, CS43, CS44, CSA, CSN, CST, CSW, CSW31, CSW32, CSW33, DA, DA1, DA2, DAR, DAT, DB, DB2, DD, DD1, DD2, DDQ, DDQGE, DDQGE31, DDQGE32, DDQGE33, DDQV, DDQV31, DDQV32, DDQV33, EX, FO, FU, FW, GE, IF, II, II21, II22, II31, II32, II33, II41, II42, II43, II44, IO, IW, JJ, JJ21, JJ22, JJ31, JJ32, JJ33, JJ41, JJ42, JJ43, JJ44, JJR, JJT, JK, MC, MC1, MC2, MC221, MC222, MCMC, MD, MF, ND1, NN, NN1, NN121, NN122, NN131, NN132, NN133, NN141, NN142, NN143, NN144, NN2, NN21, NN22, NN221, NN222, NN31, NN32, NN33, NNA, NNB, NNL1, NNL2, NNO, NNO2, NNT1, NNT131, NNT132, NNT133, NNT2, NNU, NNU1, NNU2, NNU21, NNU22, NNU221, NNU222, NP, NP1, NP2, NPD1, NPD2, NPM1, NPM2, PN, PN1, PN121, PN122, PN21, PN22, PNQO, PNQS, PNQS31, PNQS32, PNQS33, PNQV, PNQV31, PNQV32, PNQV33, PNX1, PPGE, PPH1, PPHO1, PPHO2, PPHS1, PPHS2, PPIO1, PPIO2, PPIS1, PPIS2, PPX1, PPX121, PPX122, PPX2, PPX221, PPX222, PPY, RA, RA21, RA22, REX, REX21, REX22, REX41, REX42, REX43, REX44, RG, RG21, RG22, RG41, RG42, RG43, RG44, RGQ, RGQV, RGQV31, RGQV32, RGQV33, RGR, RGT, RL, RL21, RL22, RL31, RL32, RL33, RP, RPK, RR, RR21, RR22, RR31, RR32, RR33, RR41, RR42, RR43, RR44, RR51, RR52, RR53, RR54, RR55, RRQ, RRQV, RRQV31, RRQV32, RRQV33, RRR, RRT, RT, RT21, RT22, RT31, RT32, RT33, RT41, RT42, RT43, RT44, TO, UH, UH21, UH22, UH31, UH32, UH33, VB0, VBDR, VBDZ, VBG, VBI, VBM, VBN, VBR, VBZ, VD0, VDD, VDG, VDI, VDN, VDZ, VH0, VHD, VHG, VHI, VHN, VHZ, VM, VM21, VM22, VMK, VV0, VVD, VVG, VVGK, VVI, VVN, VVNK, VVZ, XX, Y, ZZ1, ZZ2, ZZ221, ZZ222
ner ActorsAbstractions, ActorsFirstPerson, ActorsPeople, ActorsPublicEntities, CitationAuthority, CitationControversy, CitationNeutral, ConfidenceHedged, ConfidenceHigh, OrganizationNarrative, OrganizationReasoning, PlanningFuture, PlanningStrategy, SentimentNegative, SentimentPositive, SignpostingAcademicWritingMoves, SignpostingMetadiscourse, StanceEmphatic, StanceModerated

Accuracy

Type Score
TAG_ACC 98.60
ENTS_F 89.86
ENTS_P 89.76
ENTS_R 89.96
TRANSFORMER_LOSS 4671131.21
TAGGER_LOSS 1405830.04
NER_LOSS 4168254.47
Downloads last month
4
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Evaluation results