English pipeline for part-of-speech and rhetorical tagging using a smaller 'common dictionary'.
Feature | Description |
---|---|
Name | en_docusco_spacy_cd_trf |
Version | 1.3 |
spaCy | >=3.7.4,<3.8.0 |
Default Pipeline | transformer , tagger , ner |
Components | transformer , tagger , ner |
Vectors | 0 keys, 0 unique vectors (0 dimensions) |
Sources | n/a |
License | MIT |
Author | David Brown |
Label Scheme
View label scheme (289 labels for 2 components)
Component | Labels |
---|---|
tagger |
APPGE , AT , AT1 , BCL21 , BCL22 , CC , CCB , CS , CS21 , CS22 , CS31 , CS32 , CS33 , CS41 , CS42 , CS43 , CS44 , CSA , CSN , CST , CSW , CSW31 , CSW32 , CSW33 , DA , DA1 , DA2 , DAR , DAT , DB , DB2 , DD , DD1 , DD2 , DDQ , DDQGE , DDQGE31 , DDQGE32 , DDQGE33 , DDQV , DDQV31 , DDQV32 , DDQV33 , EX , FO , FU , FW , GE , IF , II , II21 , II22 , II31 , II32 , II33 , II41 , II42 , II43 , II44 , IO , IW , JJ , JJ21 , JJ22 , JJ31 , JJ32 , JJ33 , JJ41 , JJ42 , JJ43 , JJ44 , JJR , JJT , JK , MC , MC1 , MC2 , MC221 , MC222 , MCMC , MD , MF , ND1 , NN , NN1 , NN121 , NN122 , NN131 , NN132 , NN133 , NN141 , NN142 , NN143 , NN144 , NN2 , NN21 , NN22 , NN221 , NN222 , NN31 , NN32 , NN33 , NNA , NNB , NNL1 , NNL2 , NNO , NNO2 , NNT1 , NNT131 , NNT132 , NNT133 , NNT2 , NNU , NNU1 , NNU2 , NNU21 , NNU22 , NNU221 , NNU222 , NP , NP1 , NP2 , NPD1 , NPD2 , NPM1 , NPM2 , PN , PN1 , PN121 , PN122 , PN21 , PN22 , PNQO , PNQS , PNQS31 , PNQS32 , PNQS33 , PNQV , PNQV31 , PNQV32 , PNQV33 , PNX1 , PPGE , PPH1 , PPHO1 , PPHO2 , PPHS1 , PPHS2 , PPIO1 , PPIO2 , PPIS1 , PPIS2 , PPX1 , PPX121 , PPX122 , PPX2 , PPX221 , PPX222 , PPY , RA , RA21 , RA22 , REX , REX21 , REX22 , REX41 , REX42 , REX43 , REX44 , RG , RG21 , RG22 , RG41 , RG42 , RG43 , RG44 , RGQ , RGQV , RGQV31 , RGQV32 , RGQV33 , RGR , RGT , RL , RL21 , RL22 , RL31 , RL32 , RL33 , RP , RPK , RR , RR21 , RR22 , RR31 , RR32 , RR33 , RR41 , RR42 , RR43 , RR44 , RR51 , RR52 , RR53 , RR54 , RR55 , RRQ , RRQV , RRQV31 , RRQV32 , RRQV33 , RRR , RRT , RT , RT21 , RT22 , RT31 , RT32 , RT33 , RT41 , RT42 , RT43 , RT44 , TO , UH , UH21 , UH22 , UH31 , UH32 , UH33 , VB0 , VBDR , VBDZ , VBG , VBI , VBM , VBN , VBR , VBZ , VD0 , VDD , VDG , VDI , VDN , VDZ , VH0 , VHD , VHG , VHI , VHN , VHZ , VM , VM21 , VM22 , VMK , VV0 , VVD , VVG , VVGK , VVI , VVN , VVNK , VVZ , XX , Y , ZZ1 , ZZ2 , ZZ221 , ZZ222 |
ner |
ActorsAbstractions , ActorsFirstPerson , ActorsPeople , ActorsPublicEntities , CitationAuthority , CitationControversy , CitationNeutral , ConfidenceHedged , ConfidenceHigh , OrganizationNarrative , OrganizationReasoning , PlanningFuture , PlanningStrategy , SentimentNegative , SentimentPositive , SignpostingAcademicWritingMoves , SignpostingMetadiscourse , StanceEmphatic , StanceModerated |
Accuracy
Type | Score |
---|---|
TAG_ACC |
98.60 |
ENTS_F |
89.86 |
ENTS_P |
89.76 |
ENTS_R |
89.96 |
TRANSFORMER_LOSS |
4671131.21 |
TAGGER_LOSS |
1405830.04 |
NER_LOSS |
4168254.47 |
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Evaluation results
- NER Precisionself-reported0.898
- NER Recallself-reported0.900
- NER F Scoreself-reported0.899
- TAG (XPOS) Accuracyself-reported0.986