pencil-flux-v1 / README.md
brushpenbob's picture
Upload folder using huggingface_hub
3a33398 verified
---
license: other
license_name: bespoke-lora-trained-license
license_link: https://multimodal.art/civitai-licenses?allowNoCredit=False&allowCommercialUse=RentCivit&allowDerivatives=False&allowDifferentLicense=False
tags:
- text-to-image
- stable-diffusion
- lora
- diffusers
- template:sd-lora
- migrated
- pencil
- style
- flux
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: pencileg
widget:
- text: ' '
output:
url: >-
24958101.jpeg
- text: ' '
output:
url: >-
24958735.jpeg
- text: ' '
output:
url: >-
24956957.jpeg
- text: ' '
output:
url: >-
24956955.jpeg
- text: ' '
output:
url: >-
24956958.jpeg
---
# Pencil Flux v1
<Gallery />
## Model description
<p>Retrained my pencil model with the new flux base</p><p></p><div data-youtube-video><iframe width="640" height="480" allowfullscreen="true" autoplay="false" disablekbcontrols="false" enableiframeapi="false" endtime="0" ivloadpolicy="0" loop="false" modestbranding="false" origin playlist src="https://www.youtube.com/embed/QynE0UGQhRs" start="0"></iframe></div>
## Trigger words
You should use `pencileg` to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](/brushpenbob/pencil-flux-v1/tree/main) them in the Files & versions tab.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('brushpenbob/pencil-flux-v1', weight_name='pencil.safetensors')
image = pipeline('`pencileg`').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)