checkpoints
This model is a fine-tuned version of meta-llama/Llama-3.1-8B on an finance-alpaca dataset. It achieves the following results on the evaluation set:
- Loss: 1.3830
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use paged_adamw_32bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.8003 | 0.0029 | 50 | 1.7726 |
1.654 | 0.0059 | 100 | 1.6940 |
1.6105 | 0.0088 | 150 | 1.5665 |
1.4474 | 0.0118 | 200 | 1.4721 |
1.4677 | 0.0147 | 250 | 1.4386 |
1.3501 | 0.0176 | 300 | 1.4294 |
1.4011 | 0.0206 | 350 | 1.4220 |
1.4403 | 0.0235 | 400 | 1.4087 |
1.5017 | 0.0265 | 450 | 1.4170 |
1.2628 | 0.0294 | 500 | 1.3992 |
1.4797 | 0.0324 | 550 | 1.3977 |
1.4455 | 0.0353 | 600 | 1.3886 |
1.423 | 0.0382 | 650 | 1.3895 |
1.3616 | 0.0412 | 700 | 1.3945 |
1.3128 | 0.0441 | 750 | 1.3885 |
1.3983 | 0.0471 | 800 | 1.3946 |
1.3529 | 0.05 | 850 | 1.3834 |
1.3314 | 0.0529 | 900 | 1.3897 |
1.4412 | 0.0559 | 950 | 1.3831 |
1.305 | 0.0588 | 1000 | 1.3893 |
Framework versions
- PEFT 0.13.3.dev0
- Transformers 4.47.0.dev0
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 2
Model tree for bryandts/Finance-Alpaca-Llama-3.1-8B
Base model
meta-llama/Llama-3.1-8B