checkpoints

This model is a fine-tuned version of meta-llama/Llama-3.1-8B on an finance-alpaca dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3830

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Use paged_adamw_32bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss
1.8003 0.0029 50 1.7726
1.654 0.0059 100 1.6940
1.6105 0.0088 150 1.5665
1.4474 0.0118 200 1.4721
1.4677 0.0147 250 1.4386
1.3501 0.0176 300 1.4294
1.4011 0.0206 350 1.4220
1.4403 0.0235 400 1.4087
1.5017 0.0265 450 1.4170
1.2628 0.0294 500 1.3992
1.4797 0.0324 550 1.3977
1.4455 0.0353 600 1.3886
1.423 0.0382 650 1.3895
1.3616 0.0412 700 1.3945
1.3128 0.0441 750 1.3885
1.3983 0.0471 800 1.3946
1.3529 0.05 850 1.3834
1.3314 0.0529 900 1.3897
1.4412 0.0559 950 1.3831
1.305 0.0588 1000 1.3893

Framework versions

  • PEFT 0.13.3.dev0
  • Transformers 4.47.0.dev0
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for bryandts/Finance-Alpaca-Llama-3.1-8B

Adapter
(137)
this model

Dataset used to train bryandts/Finance-Alpaca-Llama-3.1-8B