license: llama2
library_name: transformers
tags:
- code
model-index:
- name: Code Millenials
results:
- task:
type: text-generation
dataset:
name: HumanEval
type: openai_humaneval
metrics:
- type: pass@1
value: 0.8048
name: pass@1
verified: false
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 49.83
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=budecosystem/code-millenials-34b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 75.09
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=budecosystem/code-millenials-34b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 49.28
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=budecosystem/code-millenials-34b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 45.37
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=budecosystem/code-millenials-34b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 69.06
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=budecosystem/code-millenials-34b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 32.45
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=budecosystem/code-millenials-34b
name: Open LLM Leaderboard
Bud Code Millenials 34B
Welcome to our Code Model repository! Our model is specifically fine-tuned for code generation tasks. Bud Millenial Code Gen open-source models are currently the State of the Art (SOTA) for code generation, beating all the existing models of all sizes. We have achieved a HumanEval value of 80.48 @ Pass 1, beating proprietary models like Gemini Ultra, Claude, GPT-3.5 etc. by a large margin, and on par with GPT-4 (HumanEval ~ 82. Ref. WizardCoder). Our proprietary model (Bud Code Jr) beats GPT-4 as well with a HumanEval value of 88.2 & a context size of 168K, we will be releasing an API for Researchers, Enterprises, and potential Partners by January 2024 end. If interested, please reach out to [email protected]
News π₯π₯π₯
- [2024/01/09] We released Code Millenials 3B , which achieves the 56.09 pass@1 on the HumanEval Benchmarks.
- [2024/01/09] We released Code Millenials 1B , which achieves the 51.82 pass@1 on the HumanEval Benchmarks.
- [2024/01/03] We released Code Millenials 34B , which achieves the 80.48 pass@1 on the HumanEval Benchmarks.
- [2024/01/02] We released Code Millenials 13B , which achieves the 76.21 pass@1 on the HumanEval Benchmarks.
HumanEval
For the millenial models, the eval script in the github repo is used for the above result.
Note: The humaneval values of other models are taken from the official repos of WizardCoder, DeepseekCoder, Gemini etc.
Models
Model | Checkpoint | HumanEval (+) | MBPP (+) |
---|---|---|---|
Code Millenials 34B | HF Link | 80.48 (75) | 74.68 (62.9) |
Code Millenials 13B | HF Link | 76.21 (69.5) | 70.17 (57.6) |
Code Millenials 3B | HF Link | 56.09 (52.43) | 55.13 (47.11) |
Code Millenials 1B | HF Link | 51.82 (48.17) | 53.13 (44.61) |
π Quick Start
Inference code using the pre-trained model from the Hugging Face model hub
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("budecosystem/code-millenials-34b")
model = AutoModelForCausalLM.from_pretrained("budecosystem/code-millenials-34b")
template = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
### Instruction: {instruction}
### Response:"""
instruction = <Your code instruction here>
prompt = template.format(instruction=instruction)
inputs = tokenizer(prompt, return_tensors="pt")
sample = model.generate(**inputs, max_length=128)
print(tokenizer.decode(sample[0]))
Training details
The model is trained of 16 A100 80GB for approximately 50hrs.
Hyperparameters | Value |
---|---|
per_device_train_batch_size | 16 |
gradient_accumulation_steps | 1 |
epoch | 3 |
steps | 2157 |
learning_rate | 2e-5 |
lr schedular type | cosine |
warmup ratio | 0.1 |
optimizer | adamw |
fp16 | True |
GPU | 16 A100 80GB |
Important Note
- Bias, Risks, and Limitations: Model may sometimes make errors, produce misleading contents, or struggle to manage tasks that are not related to coding.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 53.51 |
AI2 Reasoning Challenge (25-Shot) | 49.83 |
HellaSwag (10-Shot) | 75.09 |
MMLU (5-Shot) | 49.28 |
TruthfulQA (0-shot) | 45.37 |
Winogrande (5-shot) | 69.06 |
GSM8k (5-shot) | 32.45 |