buihungtpd3's picture
update model card README.md
df60745
metadata
license: cc-by-nc-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - drug_bill_layoutv3
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-vinai
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: drug_bill_layoutv3
          type: drug_bill_layoutv3
          config: Vin_Drug_Bill
          split: train
          args: Vin_Drug_Bill
        metrics:
          - name: Precision
            type: precision
            value: 1
          - name: Recall
            type: recall
            value: 1
          - name: F1
            type: f1
            value: 1
          - name: Accuracy
            type: accuracy
            value: 1

layoutlmv3-finetuned-vinai

This model is a fine-tuned version of microsoft/layoutlmv3-base on the drug_bill_layoutv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0001
  • Precision: 1.0
  • Recall: 1.0
  • F1: 1.0
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.33 250 0.0002 1.0 1.0 1.0 1.0
0.014 2.66 500 0.0002 1.0 1.0 1.0 1.0
0.014 3.99 750 0.0001 1.0 1.0 1.0 1.0
0.0099 5.32 1000 0.0001 1.0 1.0 1.0 1.0
0.0099 6.65 1250 0.0001 1.0 1.0 1.0 1.0
0.0035 7.98 1500 0.0001 1.0 1.0 1.0 1.0
0.0035 9.31 1750 0.0001 1.0 1.0 1.0 1.0
0.0003 10.64 2000 0.0001 1.0 1.0 1.0 1.0
0.0003 11.97 2250 0.0001 1.0 1.0 1.0 1.0
0.0002 13.3 2500 0.0001 1.0 1.0 1.0 1.0

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.12.1+cu113
  • Datasets 2.6.1
  • Tokenizers 0.13.2