buihungtpd3's picture
update model card README.md
0832ef1
---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
datasets:
- drug_bill_layoutv3
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-vinv2
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: drug_bill_layoutv3
type: drug_bill_layoutv3
config: Vin_Drug_Bill
split: train
args: Vin_Drug_Bill
metrics:
- name: Precision
type: precision
value: 1.0
- name: Recall
type: recall
value: 1.0
- name: F1
type: f1
value: 1.0
- name: Accuracy
type: accuracy
value: 1.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlmv3-finetuned-vinv2
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the drug_bill_layoutv3 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0001
- Precision: 1.0
- Recall: 1.0
- F1: 1.0
- Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 3000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.33 | 250 | 0.0025 | 0.9994 | 0.9994 | 0.9994 | 0.9998 |
| 0.0662 | 2.66 | 500 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0662 | 3.99 | 750 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0111 | 5.32 | 1000 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0111 | 6.65 | 1250 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0126 | 7.98 | 1500 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0126 | 9.31 | 1750 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0032 | 10.64 | 2000 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0032 | 11.97 | 2250 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0011 | 13.3 | 2500 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0011 | 14.63 | 2750 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0002 | 15.96 | 3000 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.2