|
--- |
|
library_name: keras |
|
tags: |
|
- computer-vision |
|
- classification |
|
- 'multiple-instance-learning ' |
|
--- |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'Adam', 'learning_rate': 0.001, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} |
|
- training_precision: float32 |
|
|
|
## Training Metrics |
|
|
|
| Epochs | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | |
|
|--- |--- |--- |--- |--- | |
|
| 1| 0.315| 0.915| 0.066| 0.983| |
|
| 2| 0.089| 0.982| 0.049| 0.99| |
|
| 3| 0.078| 0.987| 0.084| 0.983| |
|
| 4| 0.059| 0.983| 0.033| 0.993| |
|
| 5| 0.042| 0.99| 0.053| 0.99| |
|
| 6| 0.042| 0.996| 0.019| 0.993| |
|
| 7| 0.013| 0.999| 0.067| 0.987| |
|
| 8| 0.055| 0.988| 0.049| 0.99| |
|
| 9| 0.005| 1.0| 0.039| 0.993| |
|
| 10| 0.005| 1.0| 0.038| 0.99| |
|
| 11| 0.039| 0.995| 0.214| 0.97| |
|
| 12| 0.008| 1.0| 0.039| 0.99| |
|
| 13| 0.002| 1.0| 0.047| 0.993| |
|
| 14| 0.016| 0.999| 0.057| 0.99| |
|
| 15| 0.046| 0.993| 0.026| 0.997| |
|
| 16| 0.002| 1.0| 0.06| 0.99| |
|
## Model Plot |
|
|
|
<details> |
|
<summary>View Model Plot</summary> |
|
|
|
 |
|
|
|
</details> |