|
--- |
|
library_name: transformers |
|
license: cc-by-nc-4.0 |
|
base_model: facebook/nougat-base |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: _base_nougat_logs |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# _base_nougat_logs |
|
|
|
This model is a fine-tuned version of [facebook/nougat-base](https://huggingface.co/facebook/nougat-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4360 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 6 |
|
- total_train_batch_size: 48 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-------:|:----:|:---------------:| |
|
| 2.0261 | 0.9901 | 83 | 1.9705 | |
|
| 1.8445 | 1.9920 | 167 | 1.7617 | |
|
| 1.6923 | 2.9940 | 251 | 1.6539 | |
|
| 1.597 | 3.9960 | 335 | 1.5871 | |
|
| 1.5287 | 4.9980 | 419 | 1.5196 | |
|
| 1.46 | 6.0 | 503 | 1.4804 | |
|
| 1.3647 | 6.9901 | 586 | 1.4360 | |
|
| 1.289 | 7.9920 | 670 | 1.3772 | |
|
| 1.1741 | 8.9940 | 754 | 1.2350 | |
|
| 0.9947 | 9.9960 | 838 | 1.0415 | |
|
| 0.7889 | 10.9980 | 922 | 0.9238 | |
|
| 0.6771 | 12.0 | 1006 | 0.7884 | |
|
| 0.6256 | 12.9901 | 1089 | 0.6646 | |
|
| 0.5402 | 13.9920 | 1173 | 0.6095 | |
|
| 0.5252 | 14.9940 | 1257 | 0.5702 | |
|
| 0.441 | 15.9960 | 1341 | 0.5282 | |
|
| 0.4077 | 16.9980 | 1425 | 0.5030 | |
|
| 0.3841 | 18.0 | 1509 | 0.4855 | |
|
| 0.3762 | 18.9901 | 1592 | 0.4703 | |
|
| 0.3611 | 19.9920 | 1676 | 0.4587 | |
|
| 0.3486 | 20.9940 | 1760 | 0.4486 | |
|
| 0.3679 | 21.9960 | 1844 | 0.4416 | |
|
| 0.3356 | 22.9980 | 1928 | 0.4400 | |
|
| 0.3343 | 24.0 | 2012 | 0.4387 | |
|
| 0.3229 | 24.9901 | 2095 | 0.4410 | |
|
| 0.2928 | 25.9920 | 2179 | 0.4377 | |
|
| 0.3042 | 26.9940 | 2263 | 0.4393 | |
|
| 0.3439 | 27.9960 | 2347 | 0.4353 | |
|
| 0.3286 | 28.9980 | 2431 | 0.4365 | |
|
| 0.353 | 29.7018 | 2490 | 0.4360 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.3 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.20.3 |
|
|