digidaw / README.md
bwahyuh's picture
Training complete
382a07c verified
---
license: apache-2.0
base_model: indolem/indobertweet-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: digidaw
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# digidaw
This model is a fine-tuned version of [indolem/indobertweet-base-uncased](https://huggingface.co/indolem/indobertweet-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.8189
- Accuracy: 0.263
- Precision: 0.2245
- Recall: 0.2050
- F1: 0.1500
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.9065 | 1.0 | 156 | 3.2812 | 0.283 | 0.2470 | 0.2098 | 0.1605 |
| 0.5336 | 2.0 | 312 | 3.5014 | 0.269 | 0.2350 | 0.2056 | 0.1543 |
| 0.3071 | 3.0 | 468 | 3.8189 | 0.263 | 0.2245 | 0.2050 | 0.1500 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1