whisper-large-v2-Ko / README.md
byoussef's picture
Librarian Bot: Add base_model information to model (#1)
bf1a85e
metadata
language:
  - ko
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - Bingsu/zeroth-korean
metrics:
  - wer
pipeline_tag: automatic-speech-recognition
base_model: openai/whisper-large-v2
model-index:
  - name: whisper-large-v2-Ko
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Bingsu/zeroth-korean
          type: Bingsu/zeroth-korean
        metrics:
          - type: wer
            value: 2.9
            name: Wer
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: google/fleurs
          type: google/fleurs
          config: ko_kr
          split: test
        metrics:
          - type: wer
            value: 20.66
            name: WER

whisper-large-v2-Ko

This model is a fine-tuned version of openai/whisper-large-v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0617
  • Wer: 2.9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

***** train metrics *****
epoch = 50.0
train_loss = 0.0234
train_runtime = 16:20:18.00
train_samples = 22262
train_samples_per_second = 19.042
train_steps_per_second = 0.085

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 7
  • total_train_batch_size: 224
  • total_eval_batch_size: 112
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0299 10.0 1000 0.0745 0.0447
0.0085 20.0 2000 0.0608 0.0353
0.0036 30.0 3000 0.0593 0.0302
0.0013 40.0 4000 0.0609 0.0282
0.0008 50.0 5000 0.0617 0.0290

Framework versions

  • Transformers 4.27.0.dev0
  • Pytorch 1.12.1+cu113
  • Datasets 2.10.1
  • Tokenizers 0.13.2