c-alfano's picture
End of training
10dc65c verified
metadata
library_name: transformers
license: gemma
base_model: google/gemma-7b
tags:
  - alignment-handbook
  - trl
  - orpo
  - generated_from_trainer
  - trl
  - orpo
  - generated_from_trainer
datasets:
  - silviasapora/low_quality_dpo7k
model-index:
  - name: gemma-7b-borpo-low-quality-v2
    results: []

gemma-7b-borpo-low-quality-v2

This model is a fine-tuned version of google/gemma-7b on the silviasapora/low_quality_dpo7k dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6017
  • Rewards/chosen: -0.0578
  • Rewards/rejected: -0.0690
  • Rewards/accuracies: 0.5714
  • Rewards/margins: 0.0112
  • Logps/rejected: -1.3795
  • Logps/chosen: -1.1561
  • Logits/rejected: 249.0934
  • Logits/chosen: 304.2649
  • Nll Loss: 1.5643
  • Log Odds Ratio: -0.6745
  • Log Odds Chosen: 0.3316

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: inverse_sqrt
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen Nll Loss Log Odds Ratio Log Odds Chosen
1.4218 1.0 168 1.4488 -0.0504 -0.0580 0.5571 0.0076 -1.1591 -1.0071 273.7526 326.8029 1.4553 -0.6712 0.2324
1.0804 2.0 336 1.4225 -0.0511 -0.0591 0.5143 0.0080 -1.1830 -1.0220 278.2473 330.5067 1.4083 -0.6897 0.2152
0.5651 3.0 504 1.6017 -0.0578 -0.0690 0.5714 0.0112 -1.3795 -1.1561 249.0934 304.2649 1.5643 -0.6745 0.3316

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1