c01zaut's picture
Upload folder using huggingface_hub
06a193b verified
---
license: other
license_name: deepseek
license_link: LICENSE
---
# deepseek-coder-7b-instruct-v1.5-RK3588-1.1.1
This version of deepseek-coder-7b-instruct-v1.5 has been converted to run on the RK3588 NPU using {'w8a8_g256', 'w8a8_g128'} quantization.
This model has been optimized with the following LoRA:
Compatible with RKLLM version: 1.1.1
###Useful links:
[Official RKLLM GitHub](https://github.com/airockchip/rknn-llm)
[RockhipNPU Reddit](https://reddit.com/r/RockchipNPU)
[EZRKNN-LLM](https://github.com/Pelochus/ezrknn-llm/)
Pretty much anything by these folks: [marty1885][https://github.com/marty1885] and [happyme531](https://huggingface.co/happyme531)
# Original Model Card for base model, deepseek-coder-7b-instruct-v1.5, below:
<p align="center">
<img width="1000px" alt="DeepSeek Coder" src="https://github.com/deepseek-ai/DeepSeek-Coder/blob/main/pictures/logo.png?raw=true">
</p>
<p align="center"><a href="https://www.deepseek.com/">[🏠Homepage]</a> | <a href="https://coder.deepseek.com/">[🤖 Chat with DeepSeek Coder]</a> | <a href="https://discord.gg/Tc7c45Zzu5">[Discord]</a> | <a href="https://github.com/guoday/assert/blob/main/QR.png?raw=true">[Wechat(微信)]</a> </p>
<hr>
### 1. Introduction of Deepseek-Coder-7B-Instruct v1.5
Deepseek-Coder-7B-Instruct-v1.5 is continue pre-trained from Deepseek-LLM 7B on 2T tokens by employing a window size of 4K and next token prediction objective, and then fine-tuned on 2B tokens of instruction data.
- **Home Page:** [DeepSeek](https://deepseek.com/)
- **Repository:** [deepseek-ai/deepseek-coder](https://github.com/deepseek-ai/deepseek-coder)
- **Chat With DeepSeek Coder:** [DeepSeek-Coder](https://coder.deepseek.com/)
### 2. Evaluation Results
<img width="1000px" alt="DeepSeek Coder" src="https://cdn-uploads.huggingface.co/production/uploads/6538815d1bdb3c40db94fbfa/xOtCTW5xdoLCKY4FR6tri.png">
### 3. How to Use
Here give some examples of how to use our model.
#### Chat Model Inference
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-7b-instruct-v1.5", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-7b-instruct-v1.5", trust_remote_code=True).cuda()
messages=[
{ 'role': 'user', 'content': "write a quick sort algorithm in python."}
]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
```
### 4. License
This code repository is licensed under the MIT License. The use of DeepSeek Coder models is subject to the Model License. DeepSeek Coder supports commercial use.
See the [LICENSE-MODEL](https://github.com/deepseek-ai/deepseek-coder/blob/main/LICENSE-MODEL) for more details.
### 5. Contact
If you have any questions, please raise an issue or contact us at [[email protected]](mailto:[email protected]).