Initial commit
Browse files- README.md +1 -1
- a2c-AntBulletEnv-v0.zip +2 -2
- a2c-AntBulletEnv-v0/data +18 -18
- a2c-AntBulletEnv-v0/policy.optimizer.pth +1 -1
- a2c-AntBulletEnv-v0/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
- vec_normalize.pkl +2 -2
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 1067.29 +/- 268.69
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-AntBulletEnv-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f2ad37009f15a95f53ac7cd4f79ada61f7bbbae5c2ed9ba307a5de3cb1db516
|
3 |
+
size 129346
|
a2c-AntBulletEnv-v0/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
@@ -64,16 +64,16 @@
|
|
64 |
"_num_timesteps_at_start": 0,
|
65 |
"seed": null,
|
66 |
"action_noise": null,
|
67 |
-
"start_time":
|
68 |
"learning_rate": 0.00096,
|
69 |
-
"tensorboard_log":
|
70 |
"lr_schedule": {
|
71 |
":type:": "<class 'function'>",
|
72 |
":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL2phc29uL21pbmljb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvamFzb24vbWluaWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
73 |
},
|
74 |
"_last_obs": {
|
75 |
":type:": "<class 'numpy.ndarray'>",
|
76 |
-
":serialized:": "
|
77 |
},
|
78 |
"_last_episode_starts": {
|
79 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -81,7 +81,7 @@
|
|
81 |
},
|
82 |
"_last_original_obs": {
|
83 |
":type:": "<class 'numpy.ndarray'>",
|
84 |
-
":serialized:": "
|
85 |
},
|
86 |
"_episode_num": 0,
|
87 |
"use_sde": true,
|
@@ -89,7 +89,7 @@
|
|
89 |
"_current_progress_remaining": 0.0,
|
90 |
"ep_info_buffer": {
|
91 |
":type:": "<class 'collections.deque'>",
|
92 |
-
":serialized:": "
|
93 |
},
|
94 |
"ep_success_buffer": {
|
95 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fee89952dc0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fee89952e50>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fee89952ee0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fee89952f70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fee89957040>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fee899570d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fee89957160>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fee899571f0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fee89957280>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fee89957310>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fee899573a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fee89957430>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fee899550f0>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
|
|
64 |
"_num_timesteps_at_start": 0,
|
65 |
"seed": null,
|
66 |
"action_noise": null,
|
67 |
+
"start_time": 1680634123110916465,
|
68 |
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": "./tensorboard",
|
70 |
"lr_schedule": {
|
71 |
":type:": "<class 'function'>",
|
72 |
":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL2phc29uL21pbmljb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvamFzb24vbWluaWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
73 |
},
|
74 |
"_last_obs": {
|
75 |
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOg+ZUCdFp6+sfQdPy/Hkr8vt8W/wnCQvzDqhTt6Me0+3rM2v9pnyz/5+wLADPohQFeMQD7QKH2/a4BJQNIewzyjwPm+zeyTv143F0ADvF3APAx0P5YTkT/JIAHADviSvE3omb8ev92/+2wvwEJgsL/YZIg+q9zPvwaWvb1ekzO+7zSGvgmd+j45FQI/3PO8v9SvtT4YRUdAy2bTP4AULL953cK+xZSFPzIfuT4SFIO/Ry2SP1I1sz8ARDQ/Lk6wvc7oMb/uQfk/T44+v1tbFT4+6FQ/Hr/dv5PKuj5CYLC/wK56vteeKr5OGBw/wF5PvTgDGkCzjA6/SvmAP31rbD/Ioxo/jp42vINM3j7r4I4+fG6FPmZBBD6RI5q+wAC3v6Tf4b8lABY+F4ORvlA/cj8dLWo/RaAwv4N4ab/uGRG8TeiZvx6/3b+Tyro+78g5PzJtVr+7x8y+wSodP463tT4MV9i8zyEUv7eI1jxKBEA/qxMGP5Bctr+7T/e+2MI8P+jKd79kAQy/GnaMPaPyAT8ibLA+AWuEvpPC9z2ooW8/n1Uiv+ILWb8rxhi/K+E5vz7oVD+2xRM/k8q6Pu/IOT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
},
|
78 |
"_last_episode_starts": {
|
79 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
81 |
},
|
82 |
"_last_original_obs": {
|
83 |
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACVNEc2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAXUoPvQAAAADNOf2/AAAAALtnxr0AAAAAXkztPwAAAACPiqk9AAAAADHD7D8AAAAA85/hvQAAAAB7f/+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw61DNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPVU9L0AAAAASlzZvwAAAAAwey68AAAAANBH6D8AAAAABcdavQAAAAAV+f0/AAAAAGFgjL0AAAAAZqfcvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEuQojYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBYLda9AAAAANCh5r8AAAAAmkoHPQAAAABsuOw/AAAAAEuLAD4AAAAAy9/iPwAAAAChSlU9AAAAAHLk678AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADK4+s2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6FejvQAAAABlN+a/AAAAAHlY/D0AAAAArWb0PwAAAABN8q09AAAAAITo2T8AAAAAh7UzvAAAAAAaGO6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
},
|
86 |
"_episode_num": 0,
|
87 |
"use_sde": true,
|
|
|
89 |
"_current_progress_remaining": 0.0,
|
90 |
"ep_info_buffer": {
|
91 |
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIsomEwnH/+MAWyUTegDjAF0lEdAnImKdpZfUnV9lChoBkdAjf6wgDA8CGgHTegDaAhHQJySqCK77Kt1fZQoaAZHQH/PQSrYGt9oB03oA2gIR0Cck8c5sCT2dX2UKGgGR0CErDEE1VHXaAdN6ANoCEdAnJRO8K5TZXV9lChoBkdAjlmO0TlDGGgHTegDaAhHQJyY0nVoYel1fZQoaAZHQJKsHk/8l5ZoB03oA2gIR0Ccoe44p+c6dX2UKGgGR0CIpnJWeYlZaAdN6ANoCEdAnKMM9bHIZXV9lChoBkdAkET752yLRGgHTegDaAhHQJyjk052hZh1fZQoaAZHQJCRcGqxTsJoB03oA2gIR0CcqBKXfIjodX2UKGgGR0CTbdbb1yvLaAdN6ANoCEdAnLEy5mRNh3V9lChoBkdAkhVctCiRGWgHTegDaAhHQJyyU9C/oJR1fZQoaAZHQIV75AMUh3doB03oA2gIR0CcstsUqQRxdX2UKGgGR0CQvj3S8an8aAdN6ANoCEdAnLdeMuOCG3V9lChoBkdAg/vgH3UQTWgHTegDaAhHQJzAfPLPldV1fZQoaAZHQIm9uchC+lFoB03oA2gIR0CcwZtI065odX2UKGgGR0CPWEvugHu7aAdN6ANoCEdAnMIi1AqusHV9lChoBkdAkXl89KVY6mgHTegDaAhHQJzGv3pOerd1fZQoaAZHQJAqg+QlruZoB03oA2gIR0Ccz+ZZ0SyudX2UKGgGR0CDaOU7jkuIaAdN6ANoCEdAnNEFjI7vHHV9lChoBkdAhG+QzLwF1WgHTegDaAhHQJzRjBguyu91fZQoaAZHQI50B+6RQrNoB03oA2gIR0Cc1g+i8FpxdX2UKGgGR0CTgVAWBSUDaAdN6ANoCEdAnN82seXAunV9lChoBkdAjmYflZHNHGgHTegDaAhHQJzgVxzaK1p1fZQoaAZHQJKlK3RXwLFoB03oA2gIR0Cc4N+8oQWfdX2UKGgGR0CSZYEcbR4RaAdN6ANoCEdAnOVb0e2d/nV9lChoBkdAk4mZazNUwWgHTegDaAhHQJzug0BOpKl1fZQoaAZHQJMBjURWcSZoB03oA2gIR0Cc76cLjPv8dX2UKGgGR0CRPrjslb/waAdN6ANoCEdAnPAuzposZ3V9lChoBkdAiQuPPcBU72gHTegDaAhHQJz0rcsUZel1fZQoaAZHQIutS90zTF5oB03oA2gIR0Cc/ctFKCg9dX2UKGgGR0CQWWTIvJzUaAdN6ANoCEdAnP7pwOvt+nV9lChoBkdAk4kGt+1Bt2gHTegDaAhHQJz/cEC/47B1fZQoaAZHQJFLoQCjk+5oB03oA2gIR0CdA+3i704BdX2UKGgGR0CRkA6Z6UqyaAdN6ANoCEdAnQz9Y8uBc3V9lChoBkdAkH8Dbi6xxGgHTegDaAhHQJ0OG0TlDF91fZQoaAZHQJJxM47zTWpoB03oA2gIR0CdDqFTefqYdX2UKGgGR0CTza8lXzUaaAdN6ANoCEdAnRMazZ6D5HV9lChoBkdAj8FbyhBZ6mgHTegDaAhHQJ0cOzKLbYd1fZQoaAZHQJBO6oR7JGRoB03oA2gIR0CdHVniNsFddX2UKGgGR0CUMEGNaQmvaAdN6ANoCEdAnR3hq9GqgnV9lChoBkdAkhjop2ECeWgHTegDaAhHQJ0iZgH/tIF1fZQoaAZHQJFbp7Uoa1loB03oA2gIR0CdK5LPUrkKdX2UKGgGR0CO1X2U0Nz9aAdN6ANoCEdAnSyy5RTCL3V9lChoBkdAkYH3We6I32gHTegDaAhHQJ0tOh24d6t1fZQoaAZHQJDZ9u63AmBoB03oA2gIR0CdMbZVXFLndX2UKGgGR0COJUJx//edaAdN6ANoCEdAnTrZVbRne3V9lChoBkdAkDyLhBJI2GgHTegDaAhHQJ07+rQw9JV1fZQoaAZHQJMP9X+2mYVoB03oA2gIR0CdPIK8+RozdX2UKGgGR0CGh0kbgjyGaAdN6ANoCEdAnUEQXEZR9HV9lChoBkdAkgsakEcKgWgHTegDaAhHQJ1KRpAUtZp1fZQoaAZHQI34plYlpoNoB03oA2gIR0CdS2jaPCEYdX2UKGgGR0CPT2FWXC0oaAdN6ANoCEdAnUvxW5painV9lChoBkdAjLJQMpgCwWgHTegDaAhHQJ1Qe9h7Vrh1fZQoaAZHQH/p7Y9Pk7xoB03oA2gIR0CdWbbwjMV2dX2UKGgGR0CRHVgK4QSSaAdN6ANoCEdAnVrW2CuloHV9lChoBkdAi/L8nNPgvWgHTegDaAhHQJ1bXV+Zw4t1fZQoaAZHQJJaq7lJYkpoB03oA2gIR0CdX9mig00ndX2UKGgGR0CVh6omXw9aaAdN6ANoCEdAnWkCR4hUznV9lChoBkdAk27dmxt52WgHTegDaAhHQJ1qJGAkLQZ1fZQoaAZHQJArF1bJOnFoB03oA2gIR0Cdaq0sOG0vdX2UKGgGR0CTxlIa99MLaAdN6ANoCEdAnW8sNMGorHV9lChoBkdAkxtZVXFLnWgHTegDaAhHQJ14ZNyo4uN1fZQoaAZHQJMZKTfR/mVoB03oA2gIR0CdeYeXAuZkdX2UKGgGR0CSHkua4MF2aAdN6ANoCEdAnXoPqxC6YnV9lChoBkdAkqyOUD+zdGgHTegDaAhHQJ1+lVsDW9V1fZQoaAZHQI529KVY6n1oB03oA2gIR0Cdh8KbKA8TdX2UKGgGR0CS6p/tIClraAdN6ANoCEdAnYjkfHPu5XV9lChoBkdAkuomXC0ngGgHTegDaAhHQJ2JbLOiWVx1fZQoaAZHQJPwAVWS2YxoB03oA2gIR0CdjfDBMzuXdX2UKGgGR0CSaXUm2LHdaAdN6ANoCEdAnZcj90ihWnV9lChoBkdAkeeBcmjTKGgHTegDaAhHQJ2YRIxxkup1fZQoaAZHQJQasHcDbJxoB03oA2gIR0CdmMyCWeH0dX2UKGgGR0CUzVHdGiHqaAdN6ANoCEdAnZ1Lf1pTM3V9lChoBkdAlMalh9b5dmgHTegDaAhHQJ2mdpGnXNF1fZQoaAZHQJVcd4A0bcZoB03oA2gIR0Cdp5fkFOfvdX2UKGgGR0CT5HnvUjLTaAdN6ANoCEdAnagfQSi/PHV9lChoBkdAk1NtcnmaIGgHTegDaAhHQJ2snsByS3d1fZQoaAZHQJEQV5le4TdoB03oA2gIR0Cdtc0J4SpSdX2UKGgGR0CSbF9jgAIZaAdN6ANoCEdAnbbtE1EVnHV9lChoBkdAk+NcEvCdjGgHTegDaAhHQJ23c9ZA6dV1fZQoaAZHQJUDwwGnn+1oB03oA2gIR0Cdu/UxmCiAdX2UKGgGR0CVaTvRZ2ZBaAdN6ANoCEdAncUSkXUH6nV9lChoBkdAkmAh9Tgl4WgHTegDaAhHQJ3GMZzgdfd1fZQoaAZHQJMirA8B+4NoB03oA2gIR0CdxrigTRICdX2UKGgGR0CUTrBRQ79yaAdN6ANoCEdAncs85fdAPnV9lChoBkdAk9s4aLn9vWgHTegDaAhHQJ3UX/4qPOp1fZQoaAZHQJK/8NsnAqNoB03oA2gIR0Cd1X/3WWhRdX2UKGgGR0CUeWOS4e90aAdN6ANoCEdAndYIR28qWnV9lChoBkdAlb9QMtsen2gHTegDaAhHQJ3aimP5pJx1fZQoaAZHQJMFh0bLlmxoB03oA2gIR0Cd46ITXarWdX2UKGgGR0CKwd2saKk3aAdN6ANoCEdAneTArlNlAnV9lChoBkdAlvBDLfUF0WgHTegDaAhHQJ3lRu+AVfx1fZQoaAZHQJQYnzundftoB03oA2gIR0Cd6b189fTkdX2UKGgGR0CR5SPszEaVaAdN6ANoCEdAnfLl0HQhOnV9lChoBkdAkbTk0FbFCWgHTegDaAhHQJ30Bxn3+Mt1fZQoaAZHQJBEUERradtoB03oA2gIR0Cd9I+gDifhdX2UKGgGR0CRody2x6fKaAdN6ANoCEdAnfkMo+fRNXV9lChoBkdAlUl/2oNutWgHTegDaAhHQJ4CIenyd4F1fZQoaAZHQJXSirhisn1oB03oA2gIR0CeA0HDJlredX2UKGgGR0CVPpxFAmiQaAdN6ANoCEdAngPJD/lyR3VlLg=="
|
93 |
},
|
94 |
"ep_success_buffer": {
|
95 |
":type:": "<class 'collections.deque'>",
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56190
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:51499003f1931dc50385370aaad5a8f902fefc11bd9bc2d627622ae5d397527b
|
3 |
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56958
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dd3e177f9213479a7f2ab51bdc410b239611144a04ff60ed81faacc22837d135
|
3 |
size 56958
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1861b915e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1861b91670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1861b91700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1861b91790>", "_build": "<function ActorCriticPolicy._build at 0x7f1861b91820>", "forward": "<function ActorCriticPolicy.forward at 0x7f1861b918b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1861b91940>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1861b919d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1861b91a60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1861b91af0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1861b91b80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1861b91c10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1861b92120>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680629094294750469, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL2phc29uL21pbmljb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvamFzb24vbWluaWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGDhPz8XB6u/vheCvlSabLxG4+s/WbFPP9cp2z5WkkW/tK1dPYLDGD/HOgdAERcVP/rJ+b70P+O/8e5VP+cF+751P90+L4U0Pc4haD4sXX4/QTSYPyj+sD8m1+O+NxKFwNrtgr8+Bw/ANAcoP8/3hL8Uty4+dpCFPwrp4j3UAR2/A/drv9VFPz/YxRnAD4gdvh/wEr+PZD2+RmFIvwgHCL3pm/g/nnISvxOWZz9uAK+7dN9MP8qwQ79ZGui/kgN/vuMe+z7Vdd295a36P7TJOr/YRXo//RnlPjQHKD/P94S/hgD9v0Ilsb8J9qC+iGpZv5/fuj8l1OO+SIE5vsrstz4n2zXAndHQv+hFc787egw+CIjOPzq3z729sWg/c/g9vVCdoT/pXQO/FDkVP8N7gjzfICRA59l2v/tzL7/ZxvG+2EV6P/0Z5T40Byg/am92P5dSWUDaCUI/85qePidQrb8RDz0/E79FwJNIOb8NdiS+AGhpvrNlK7+vOD/Awa2IvEh4CUA5fT28umgTQD+AV7/xz58/4sOJP50sJ0ATqtE87pSdP58eV8BzRpM9qNtiQNrtgr8+Bw/A0wPDv8/3hL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAcJdK1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcDJIPQAAAABZeey/AAAAAD5jqTwAAAAA/BLfPwAAAAAJBLs9AAAAACDG9D8AAAAA7fr7PQAAAAAvCv2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1wS9tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJX3hz0AAAAA+8v0vwAAAADC+aa9AAAAAChDAUAAAAAAdwPwPAAAAAAUDO4/AAAAAIUs+z0AAAAAU94AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN2fCbcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAqcO49AAAAAAmm6b8AAAAAxtoGvgAAAAAc8tg/AAAAAF28lb0AAAAAebvdPwAAAAAHPyM9AAAAAGoD3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABWiHW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAP/0JPQAAAAA+gOm/AAAAAMQ0h70AAAAAg5rkPwAAAAB5vWs9AAAAAK4C8j8AAAAA/szkPQAAAACmpeW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIukr7sOXmiMAWyUTegDjAF0lEdAnAKtBBzFM3V9lChoBkdAmi2VyFPBSGgHTegDaAhHQJwF86vJRwZ1fZQoaAZHQJxlMmrsByVoB03oA2gIR0CcCH925hBrdX2UKGgGR0CZ/EUSqU/waAdN6ANoCEdAnAokM9bHInV9lChoBkdAm2Atz4k/r2gHTegDaAhHQJwRn0kGA091fZQoaAZHQIb0vFzdUKloB03oA2gIR0CcFNg2606YdX2UKGgGR0CQjJs/pt78aAdN6ANoCEdAnBdlafSQYHV9lChoBkdAnppSqdYnv2gHTegDaAhHQJwZCS9ugpV1fZQoaAZHQKAA97oB7u5oB03oA2gIR0CcIHVoHs1LdX2UKGgGR0CXlS1/DtPYaAdN6ANoCEdAnCOwKF7D23V9lChoBkdAnjyX/Pw/gWgHTegDaAhHQJwmOY+jdpJ1fZQoaAZHQJQbKrCFbmloB03oA2gIR0CcJ9y5I6KcdX2UKGgGR0CgJYL0J4SpaAdN6ANoCEdAnC9NHMEA53V9lChoBkdAoDX9HWjGk2gHTegDaAhHQJwyhhJAdGR1fZQoaAZHQJXd71DjR2NoB03oA2gIR0CcNRSM98qndX2UKGgGR0CeCBD0UXYUaAdN6ANoCEdAnDa4ekpI+XV9lChoBkdAnHC48EFGG2gHTegDaAhHQJw+J/nW8RN1fZQoaAZHQJt+WlenhsJoB03oA2gIR0CcQV/tIClrdX2UKGgGR0CdJp7rLQokaAdN6ANoCEdAnEPraM72c3V9lChoBkdAmg3xxgiNbWgHTegDaAhHQJxFjdTHbRF1fZQoaAZHQJiDpfeDWbxoB03oA2gIR0CcTPzposZpdX2UKGgGR0CVp+KoybhFaAdN6ANoCEdAnFA3p4bCJ3V9lChoBkdAmSAkAtFrmGgHTegDaAhHQJxSxk/bCaZ1fZQoaAZHQJnzrTUiILxoB03oA2gIR0CcVGqZc9nsdX2UKGgGR0CDYaVoHs1LaAdN6ANoCEdAnFvlgDzRQnV9lChoBkdAmklFhTfixWgHTegDaAhHQJxfJBHCoCN1fZQoaAZHQJQYroTwlSloB03oA2gIR0CcYbUIcBEKdX2UKGgGR0CENor6LwWnaAdN6ANoCEdAnGNbWI42j3V9lChoBkdAko1oAOrhi2gHTegDaAhHQJxq0g3cYZV1fZQoaAZHQJTGM4GUwBZoB03oA2gIR0CcbgrQgLZ0dX2UKGgGR0CFKQ9Mbm2caAdN6ANoCEdAnHCZtrKvFHV9lChoBkdAm1SEpZwGW2gHTegDaAhHQJxyQERradt1fZQoaAZHQIfiumBOHnFoB03oA2gIR0Cceb08/2TQdX2UKGgGR0CTEfvZAY51aAdN6ANoCEdAnHz4Gt6ol3V9lChoBkdAlXb7ONYKY2gHTegDaAhHQJx/huAI6bR1fZQoaAZHQImcKQJXyRVoB03oA2gIR0CcgStWuHN5dX2UKGgGR0CXj+ul41P4aAdN6ANoCEdAnIieJk5IYnV9lChoBkdAmXu6tPpIMGgHTegDaAhHQJyL2QfZElV1fZQoaAZHQJmpgeJYT0xoB03oA2gIR0Ccjm3qAz55dX2UKGgGR0CXmK04zabnaAdN6ANoCEdAnJAS/j81oHV9lChoBkdAmcHLCSA6MmgHTegDaAhHQJyXh4lhPTJ1fZQoaAZHQJezA/bCaZxoB03oA2gIR0CcmsXDFZPmdX2UKGgGR0CY/w4zabnYaAdN6ANoCEdAnJ1R/Aj6e3V9lChoBkdAmMcw/1QIlmgHTegDaAhHQJye9lRP4211fZQoaAZHQJlaXFqBVdZoB03oA2gIR0CcpoiTMaCMdX2UKGgGR0CYIco8IRh+aAdN6ANoCEdAnKnRnjABUHV9lChoBkdAgm4ad1+y7mgHTegDaAhHQJysaso2GZh1fZQoaAZHQJXxj7YTTORoB03oA2gIR0CcrhPwd8zAdX2UKGgGR0CZhx0zj3mFaAdN6ANoCEdAnLWUVN5+pnV9lChoBkdAlLRuNT987mgHTegDaAhHQJy42Vs1sLx1fZQoaAZHQJdMEPI4lyBoB03oA2gIR0Ccu3S1maphdX2UKGgGR0COUA0FbFCLaAdN6ANoCEdAnL0mIbfgrHV9lChoBkdAkjVYG2TgVGgHTegDaAhHQJzEsMx46fd1fZQoaAZHQJT4XqHGjsVoB03oA2gIR0Ccx/MpgCwKdX2UKGgGR0CZbvLHMlkZaAdN6ANoCEdAnMqGfseGPHV9lChoBkdAltsSEg4ffWgHTegDaAhHQJzMLwc5sCV1fZQoaAZHQJKmni++M61oB03oA2gIR0Cc07F6zE75dX2UKGgGR0CYhJneizsyaAdN6ANoCEdAnNbwRGtp23V9lChoBkdAmRpTHsC1Z2gHTegDaAhHQJzZgznA6+51fZQoaAZHQJlUxY1YQrdoB03oA2gIR0Cc2ywaisXBdX2UKGgGR0CTzBdCE6DHaAdN6ANoCEdAnOKv1DjR2XV9lChoBkdAkM84w22oemgHTegDaAhHQJzl9MqSX+l1fZQoaAZHQJUMh6gM+eRoB03oA2gIR0Cc6IT3IuGsdX2UKGgGR0CTjEOHFglXaAdN6ANoCEdAnOooHcDbJ3V9lChoBkdAmdsHxz7uUmgHTegDaAhHQJzxnpB5X2d1fZQoaAZHQJczV4/u9e1oB03oA2gIR0Cc9N8tf5UMdX2UKGgGR0CYhH9Nvfj0aAdN6ANoCEdAnPdxoysS03V9lChoBkdAj1+7lq8DjmgHTegDaAhHQJz5GV2Rq491fZQoaAZHQJTid3gUDdRoB03oA2gIR0CdAJyWiUPhdX2UKGgGR0CV0IaTwDvFaAdN6ANoCEdAnQPbe/Ho5nV9lChoBkdAj/Xx6nivPmgHTegDaAhHQJ0GbQyAQQN1fZQoaAZHQJMcaG34Kx9oB03oA2gIR0CdCBOD8LrpdX2UKGgGR0CXqd/x2B8QaAdN6ANoCEdAnQ+JmNBF/nV9lChoBkdAmIYxQWN3n2gHTegDaAhHQJ0SyJ0nw5N1fZQoaAZHQJoGDfCQ9zRoB03oA2gIR0CdFVi1y/9HdX2UKGgGR0CXobVnmJWOaAdN6ANoCEdAnRb95hScb3V9lChoBkdAmK+OYc/+sGgHTegDaAhHQJ0edJ5E+gV1fZQoaAZHQJluVFRYRuloB03oA2gIR0CdIa8IAwPAdX2UKGgGR0CZ6qOo5xR3aAdN6ANoCEdAnSQ6jSG8EnV9lChoBkdAm1qPsRg7YGgHTegDaAhHQJ0l3vgFX7t1fZQoaAZHQJQ5U8W9DhNoB03oA2gIR0CdLWHFxXGPdX2UKGgGR0CUZyEJjUd8aAdN6ANoCEdAnTCefdyksXV9lChoBkdAkyQlK02LpGgHTegDaAhHQJ0zLHS4OMF1fZQoaAZHQJWNb+98JD5oB03oA2gIR0CdNNGn4wh4dX2UKGgGR0CZNeEbo8p1aAdN6ANoCEdAnTxFsDW9UXV9lChoBkdAkB3oW1twaWgHTegDaAhHQJ0/ftRekYZ1fZQoaAZHQJV3ESHuZ1FoB03oA2gIR0CdQg28Zk08dX2UKGgGR0CW2yK02LpBaAdN6ANoCEdAnUOxsyi22HV9lChoBkdAmBgOwC8vmGgHTegDaAhHQJ1LIhOgxrV1fZQoaAZHQJkrY3vQWvdoB03oA2gIR0CdTlcPe54GdX2UKGgGR0CUpSexfOUuaAdN6ANoCEdAnVDjPBzmwXV9lChoBkdAmXXPRZ2ZA2gHTegDaAhHQJ1SicjJMg51fZQoaAZHQJPAi6lLvkRoB03oA2gIR0CdWf32EkB0dX2UKGgGR0CWwiJv5xioaAdN6ANoCEdAnV05Rjz7M3V9lChoBkdAlzP3dXT3I2gHTegDaAhHQJ1fybG3nZF1fZQoaAZHQJU9yTGHYYloB03oA2gIR0CdYXFuNxVAdX2UKGgGR0CNp7lFtsN2aAdN6ANoCEdAnWj7u+h4+3V9lChoBkdAjgFcaOxSpGgHTegDaAhHQJ1sO4ZuQ6p1fZQoaAZHQJPTZVS4vvloB03oA2gIR0CdbtQpnYg8dX2UKGgGR0CLCGGmk30gaAdN6ANoCEdAnXCC8BdUsHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.0-41-generic-x86_64-with-glibc2.10 # 44~20.04.1-Ubuntu SMP Fri Jun 24 13:27:29 UTC 2022", "Python": "3.8.12", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu117", "GPU Enabled": "True", "Numpy": "1.24.2", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fee89952dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fee89952e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fee89952ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fee89952f70>", "_build": "<function ActorCriticPolicy._build at 0x7fee89957040>", "forward": "<function ActorCriticPolicy.forward at 0x7fee899570d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fee89957160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fee899571f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fee89957280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fee89957310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fee899573a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fee89957430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fee899550f0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680634123110916465, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL2phc29uL21pbmljb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvamFzb24vbWluaWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOg+ZUCdFp6+sfQdPy/Hkr8vt8W/wnCQvzDqhTt6Me0+3rM2v9pnyz/5+wLADPohQFeMQD7QKH2/a4BJQNIewzyjwPm+zeyTv143F0ADvF3APAx0P5YTkT/JIAHADviSvE3omb8ev92/+2wvwEJgsL/YZIg+q9zPvwaWvb1ekzO+7zSGvgmd+j45FQI/3PO8v9SvtT4YRUdAy2bTP4AULL953cK+xZSFPzIfuT4SFIO/Ry2SP1I1sz8ARDQ/Lk6wvc7oMb/uQfk/T44+v1tbFT4+6FQ/Hr/dv5PKuj5CYLC/wK56vteeKr5OGBw/wF5PvTgDGkCzjA6/SvmAP31rbD/Ioxo/jp42vINM3j7r4I4+fG6FPmZBBD6RI5q+wAC3v6Tf4b8lABY+F4ORvlA/cj8dLWo/RaAwv4N4ab/uGRG8TeiZvx6/3b+Tyro+78g5PzJtVr+7x8y+wSodP463tT4MV9i8zyEUv7eI1jxKBEA/qxMGP5Bctr+7T/e+2MI8P+jKd79kAQy/GnaMPaPyAT8ibLA+AWuEvpPC9z2ooW8/n1Uiv+ILWb8rxhi/K+E5vz7oVD+2xRM/k8q6Pu/IOT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACVNEc2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAXUoPvQAAAADNOf2/AAAAALtnxr0AAAAAXkztPwAAAACPiqk9AAAAADHD7D8AAAAA85/hvQAAAAB7f/+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw61DNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPVU9L0AAAAASlzZvwAAAAAwey68AAAAANBH6D8AAAAABcdavQAAAAAV+f0/AAAAAGFgjL0AAAAAZqfcvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEuQojYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBYLda9AAAAANCh5r8AAAAAmkoHPQAAAABsuOw/AAAAAEuLAD4AAAAAy9/iPwAAAAChSlU9AAAAAHLk678AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADK4+s2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6FejvQAAAABlN+a/AAAAAHlY/D0AAAAArWb0PwAAAABN8q09AAAAAITo2T8AAAAAh7UzvAAAAAAaGO6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIsomEwnH/+MAWyUTegDjAF0lEdAnImKdpZfUnV9lChoBkdAjf6wgDA8CGgHTegDaAhHQJySqCK77Kt1fZQoaAZHQH/PQSrYGt9oB03oA2gIR0Cck8c5sCT2dX2UKGgGR0CErDEE1VHXaAdN6ANoCEdAnJRO8K5TZXV9lChoBkdAjlmO0TlDGGgHTegDaAhHQJyY0nVoYel1fZQoaAZHQJKsHk/8l5ZoB03oA2gIR0Ccoe44p+c6dX2UKGgGR0CIpnJWeYlZaAdN6ANoCEdAnKMM9bHIZXV9lChoBkdAkET752yLRGgHTegDaAhHQJyjk052hZh1fZQoaAZHQJCRcGqxTsJoB03oA2gIR0CcqBKXfIjodX2UKGgGR0CTbdbb1yvLaAdN6ANoCEdAnLEy5mRNh3V9lChoBkdAkhVctCiRGWgHTegDaAhHQJyyU9C/oJR1fZQoaAZHQIV75AMUh3doB03oA2gIR0CcstsUqQRxdX2UKGgGR0CQvj3S8an8aAdN6ANoCEdAnLdeMuOCG3V9lChoBkdAg/vgH3UQTWgHTegDaAhHQJzAfPLPldV1fZQoaAZHQIm9uchC+lFoB03oA2gIR0CcwZtI065odX2UKGgGR0CPWEvugHu7aAdN6ANoCEdAnMIi1AqusHV9lChoBkdAkXl89KVY6mgHTegDaAhHQJzGv3pOerd1fZQoaAZHQJAqg+QlruZoB03oA2gIR0Ccz+ZZ0SyudX2UKGgGR0CDaOU7jkuIaAdN6ANoCEdAnNEFjI7vHHV9lChoBkdAhG+QzLwF1WgHTegDaAhHQJzRjBguyu91fZQoaAZHQI50B+6RQrNoB03oA2gIR0Cc1g+i8FpxdX2UKGgGR0CTgVAWBSUDaAdN6ANoCEdAnN82seXAunV9lChoBkdAjmYflZHNHGgHTegDaAhHQJzgVxzaK1p1fZQoaAZHQJKlK3RXwLFoB03oA2gIR0Cc4N+8oQWfdX2UKGgGR0CSZYEcbR4RaAdN6ANoCEdAnOVb0e2d/nV9lChoBkdAk4mZazNUwWgHTegDaAhHQJzug0BOpKl1fZQoaAZHQJMBjURWcSZoB03oA2gIR0Cc76cLjPv8dX2UKGgGR0CRPrjslb/waAdN6ANoCEdAnPAuzposZ3V9lChoBkdAiQuPPcBU72gHTegDaAhHQJz0rcsUZel1fZQoaAZHQIutS90zTF5oB03oA2gIR0Cc/ctFKCg9dX2UKGgGR0CQWWTIvJzUaAdN6ANoCEdAnP7pwOvt+nV9lChoBkdAk4kGt+1Bt2gHTegDaAhHQJz/cEC/47B1fZQoaAZHQJFLoQCjk+5oB03oA2gIR0CdA+3i704BdX2UKGgGR0CRkA6Z6UqyaAdN6ANoCEdAnQz9Y8uBc3V9lChoBkdAkH8Dbi6xxGgHTegDaAhHQJ0OG0TlDF91fZQoaAZHQJJxM47zTWpoB03oA2gIR0CdDqFTefqYdX2UKGgGR0CTza8lXzUaaAdN6ANoCEdAnRMazZ6D5HV9lChoBkdAj8FbyhBZ6mgHTegDaAhHQJ0cOzKLbYd1fZQoaAZHQJBO6oR7JGRoB03oA2gIR0CdHVniNsFddX2UKGgGR0CUMEGNaQmvaAdN6ANoCEdAnR3hq9GqgnV9lChoBkdAkhjop2ECeWgHTegDaAhHQJ0iZgH/tIF1fZQoaAZHQJFbp7Uoa1loB03oA2gIR0CdK5LPUrkKdX2UKGgGR0CO1X2U0Nz9aAdN6ANoCEdAnSyy5RTCL3V9lChoBkdAkYH3We6I32gHTegDaAhHQJ0tOh24d6t1fZQoaAZHQJDZ9u63AmBoB03oA2gIR0CdMbZVXFLndX2UKGgGR0COJUJx//edaAdN6ANoCEdAnTrZVbRne3V9lChoBkdAkDyLhBJI2GgHTegDaAhHQJ07+rQw9JV1fZQoaAZHQJMP9X+2mYVoB03oA2gIR0CdPIK8+RozdX2UKGgGR0CGh0kbgjyGaAdN6ANoCEdAnUEQXEZR9HV9lChoBkdAkgsakEcKgWgHTegDaAhHQJ1KRpAUtZp1fZQoaAZHQI34plYlpoNoB03oA2gIR0CdS2jaPCEYdX2UKGgGR0CPT2FWXC0oaAdN6ANoCEdAnUvxW5painV9lChoBkdAjLJQMpgCwWgHTegDaAhHQJ1Qe9h7Vrh1fZQoaAZHQH/p7Y9Pk7xoB03oA2gIR0CdWbbwjMV2dX2UKGgGR0CRHVgK4QSSaAdN6ANoCEdAnVrW2CuloHV9lChoBkdAi/L8nNPgvWgHTegDaAhHQJ1bXV+Zw4t1fZQoaAZHQJJaq7lJYkpoB03oA2gIR0CdX9mig00ndX2UKGgGR0CVh6omXw9aaAdN6ANoCEdAnWkCR4hUznV9lChoBkdAk27dmxt52WgHTegDaAhHQJ1qJGAkLQZ1fZQoaAZHQJArF1bJOnFoB03oA2gIR0Cdaq0sOG0vdX2UKGgGR0CTxlIa99MLaAdN6ANoCEdAnW8sNMGorHV9lChoBkdAkxtZVXFLnWgHTegDaAhHQJ14ZNyo4uN1fZQoaAZHQJMZKTfR/mVoB03oA2gIR0CdeYeXAuZkdX2UKGgGR0CSHkua4MF2aAdN6ANoCEdAnXoPqxC6YnV9lChoBkdAkqyOUD+zdGgHTegDaAhHQJ1+lVsDW9V1fZQoaAZHQI529KVY6n1oB03oA2gIR0Cdh8KbKA8TdX2UKGgGR0CS6p/tIClraAdN6ANoCEdAnYjkfHPu5XV9lChoBkdAkuomXC0ngGgHTegDaAhHQJ2JbLOiWVx1fZQoaAZHQJPwAVWS2YxoB03oA2gIR0CdjfDBMzuXdX2UKGgGR0CSaXUm2LHdaAdN6ANoCEdAnZcj90ihWnV9lChoBkdAkeeBcmjTKGgHTegDaAhHQJ2YRIxxkup1fZQoaAZHQJQasHcDbJxoB03oA2gIR0CdmMyCWeH0dX2UKGgGR0CUzVHdGiHqaAdN6ANoCEdAnZ1Lf1pTM3V9lChoBkdAlMalh9b5dmgHTegDaAhHQJ2mdpGnXNF1fZQoaAZHQJVcd4A0bcZoB03oA2gIR0Cdp5fkFOfvdX2UKGgGR0CT5HnvUjLTaAdN6ANoCEdAnagfQSi/PHV9lChoBkdAk1NtcnmaIGgHTegDaAhHQJ2snsByS3d1fZQoaAZHQJEQV5le4TdoB03oA2gIR0Cdtc0J4SpSdX2UKGgGR0CSbF9jgAIZaAdN6ANoCEdAnbbtE1EVnHV9lChoBkdAk+NcEvCdjGgHTegDaAhHQJ23c9ZA6dV1fZQoaAZHQJUDwwGnn+1oB03oA2gIR0Cdu/UxmCiAdX2UKGgGR0CVaTvRZ2ZBaAdN6ANoCEdAncUSkXUH6nV9lChoBkdAkmAh9Tgl4WgHTegDaAhHQJ3GMZzgdfd1fZQoaAZHQJMirA8B+4NoB03oA2gIR0CdxrigTRICdX2UKGgGR0CUTrBRQ79yaAdN6ANoCEdAncs85fdAPnV9lChoBkdAk9s4aLn9vWgHTegDaAhHQJ3UX/4qPOp1fZQoaAZHQJK/8NsnAqNoB03oA2gIR0Cd1X/3WWhRdX2UKGgGR0CUeWOS4e90aAdN6ANoCEdAndYIR28qWnV9lChoBkdAlb9QMtsen2gHTegDaAhHQJ3aimP5pJx1fZQoaAZHQJMFh0bLlmxoB03oA2gIR0Cd46ITXarWdX2UKGgGR0CKwd2saKk3aAdN6ANoCEdAneTArlNlAnV9lChoBkdAlvBDLfUF0WgHTegDaAhHQJ3lRu+AVfx1fZQoaAZHQJQYnzundftoB03oA2gIR0Cd6b189fTkdX2UKGgGR0CR5SPszEaVaAdN6ANoCEdAnfLl0HQhOnV9lChoBkdAkbTk0FbFCWgHTegDaAhHQJ30Bxn3+Mt1fZQoaAZHQJBEUERradtoB03oA2gIR0Cd9I+gDifhdX2UKGgGR0CRody2x6fKaAdN6ANoCEdAnfkMo+fRNXV9lChoBkdAlUl/2oNutWgHTegDaAhHQJ4CIenyd4F1fZQoaAZHQJXSirhisn1oB03oA2gIR0CeA0HDJlredX2UKGgGR0CVPpxFAmiQaAdN6ANoCEdAngPJD/lyR3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.0-41-generic-x86_64-with-glibc2.10 # 44~20.04.1-Ubuntu SMP Fri Jun 24 13:27:29 UTC 2022", "Python": "3.8.12", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu117", "GPU Enabled": "True", "Numpy": "1.24.2", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1e6dffc0ec09a0a5f54a86a4a0d3221a4abb0cfe17233c555cfc3efc7a54bd1
|
3 |
+
size 1023591
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 1067.2921749919653, "std_reward": 268.6860517675961, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-04T12:24:35.216623"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e653960c7dae361310584c99753290ab62de9b912e60f49f2b38ace1e9a8d3d
|
3 |
+
size 2521
|