c0ldstudy commited on
Commit
ec3b6f0
·
1 Parent(s): c980f1f

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: AntBulletEnv-v0
17
  metrics:
18
  - type: mean_reward
19
- value: 1270.18 +/- 150.90
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: AntBulletEnv-v0
17
  metrics:
18
  - type: mean_reward
19
+ value: 1116.93 +/- 147.50
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-AntBulletEnv-v0.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9b91b269877665b21e78155ec16a787036a926c8ceb9fd240314a2877967254a
3
- size 129346
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bec833fa851cff4a4197e762359f6e2ec71c4b12d81795adcd1dd0c47acf148b
3
+ size 129335
a2c-AntBulletEnv-v0/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6ca0bd4ca0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6ca0bd4d30>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6ca0bd4dc0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6ca0bd4e50>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f6ca0bd4ee0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f6ca0bd4f70>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6ca0bda040>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6ca0bda0d0>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f6ca0bda160>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6ca0bda1f0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6ca0bda280>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6ca0bda310>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc_data object at 0x7f6ca0bccfc0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {
@@ -64,16 +64,16 @@
64
  "_num_timesteps_at_start": 0,
65
  "seed": null,
66
  "action_noise": null,
67
- "start_time": 1680581868518317749,
68
  "learning_rate": 0.00096,
69
- "tensorboard_log": "./tensorboard",
70
  "lr_schedule": {
71
  ":type:": "<class 'function'>",
72
  ":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL2phc29uL21pbmljb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvamFzb24vbWluaWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
73
  },
74
  "_last_obs": {
75
  ":type:": "<class 'numpy.ndarray'>",
76
- ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOaS0z+0l+E/zlJIv2Exvz2WNQZAv/Zlv7OSGkDh9Sw+SthBP0y/hLwiani+BhkeQDsvJj+fpRDAj1oYwNPukb9Mhtc+rjiLv05dHT96qug8dF1FP2L2+72zG3C/jr5YwH1gmr/RYBXAVEgCP0p+hr+CA3Y+ptSXPw6fBj6zAag/bIPYvSLJCr/Eo+s+fV89v6DWQz8AqW9A+D5tP7Uklb+/Y4W+rSPXPzniwDxZPmw/05pKveCJRD9kxD0/jET4PypiSL4053s/5U5Ev16keT98QlQ/2FzbPlRIAj9Kfoa/Rbu0vm55Sr9ptIU+GugHPx6FzD+Dcwc/b+ksPbubc7+LYtE+qPsSP6426T6x+QQ/dC6Sv+RZ0L96nsg+GFZlvzNf+T4HRIC/ouAlP/q8sT9Nqsq+YXEkv0cBZL8orJk9fEJUP9FgFcBUSAI/Sn6Gv66CFr9MTgdA4JgZwBCRUr9FBD5A/wwFv9HX+TwfLc0/2q0QPUxynL9E542/QM74u1Bl6z+e09C5cGCMv/TK+L0hvlO/gP9+Pyu5g7+dpiK/gdekP/lSiL/Zf22/3OKwvH1gmr/YXNs+VEgCP+6jcz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
  },
78
  "_last_episode_starts": {
79
  ":type:": "<class 'numpy.ndarray'>",
@@ -81,7 +81,7 @@
81
  },
82
  "_last_original_obs": {
83
  ":type:": "<class 'numpy.ndarray'>",
84
- ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB9KqW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAlnJ2vQAAAACIkvm/AAAAAOJSK70AAAAAtin7PwAAAADQoPO9AAAAADtR8j8AAAAAMnjVPQAAAADsctu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkiXMNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMVAq70AAAAAdP/8vwAAAABRja27AAAAAOe73j8AAAAA7ObXPQAAAACFA/4/AAAAAOeSpb0AAAAArCztvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI+7UzUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID/1Qy+AAAAAH8R7r8AAAAAsVoIvQAAAAAX3fo/AAAAAOQOHb0AAAAAZEP2PwAAAABUbhs9AAAAAJ4l9r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABaoY22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACADQRkPQAAAADxKgDAAAAAAHF8rr0AAAAA577jPwAAAABDdwC+AAAAAEUTAEAAAAAArhG3vQAAAAAv/eG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
  },
86
  "_episode_num": 0,
87
  "use_sde": true,
@@ -89,7 +89,7 @@
89
  "_current_progress_remaining": 0.0,
90
  "ep_info_buffer": {
91
  ":type:": "<class 'collections.deque'>",
92
- ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJr9jSofjjuMAWyUTegDjAF0lEdAoGU13IMjNnV9lChoBkdAl87TdDYywmgHTegDaAhHQKBoQIF/x2B1fZQoaAZHQJGUUIiTt9hoB03oA2gIR0CgaXf1YhdMdX2UKGgGR0CTQqQNkOI7aAdN6ANoCEdAoGsx/EwWWXV9lChoBkdAleCeXiR4hWgHTegDaAhHQKBt46mO2iN1fZQoaAZHQJz1y1rqMWJoB03oA2gIR0CgcOmJN0vHdX2UKGgGR0CQL1K5CngpaAdN6ANoCEdAoHIhjBl+VnV9lChoBkdAmd+ScPOIImgHTegDaAhHQKBz2YJE6T51fZQoaAZHQJaDPviLl3hoB03oA2gIR0CgdoioS+QEdX2UKGgGR0CTbRioKlYVaAdN6ANoCEdAoHmDp3X7L3V9lChoBkdAnau9foicG2gHTegDaAhHQKB6uID5j6N1fZQoaAZHQI1lYlhPTG5oB03oA2gIR0CgfHAWrOqvdX2UKGgGR0CPdapo9LYgaAdN6ANoCEdAoH8ZUrCm/HV9lChoBkdAnA6stsenymgHTegDaAhHQKCCFF2mpER1fZQoaAZHQJz8lcB2fTVoB03oA2gIR0Cgg0e2d/aydX2UKGgGR0Cbby6jnFHbaAdN6ANoCEdAoIT/3ta6jHV9lChoBkdAm+c64+bExmgHTegDaAhHQKCHsSFoL5R1fZQoaAZHQJx6HgQ6IWRoB03oA2gIR0CgirCEpRXPdX2UKGgGR0CdT6MAWBSUaAdN6ANoCEdAoIvnAGjbjHV9lChoBkdAmb0Q0j1PFmgHTegDaAhHQKCNoCJ40Mx1fZQoaAZHQJjpb/NqxkdoB03oA2gIR0CgkE86vJRwdX2UKGgGR0CeRBRISUTtaAdN6ANoCEdAoJNNbLU1AXV9lChoBkdAnuwWBSUC72gHTegDaAhHQKCUgcZLqUx1fZQoaAZHQJ7CmCJ40MxoB03oA2gIR0CgljlBIFvAdX2UKGgGR0CbPcVbA1vVaAdN6ANoCEdAoJjnnfVI7XV9lChoBkdAh7XntWuHOGgHTegDaAhHQKCb65R0lqt1fZQoaAZHQJl5OF23azxoB03oA2gIR0CgnR+mWMS9dX2UKGgGR0Cfxq1UlzEKaAdN6ANoCEdAoJ7Z42S+xnV9lChoBkdAnuzrhNucc2gHTegDaAhHQKChhBwdbPh1fZQoaAZHQJ+Fhm6GxlhoB03oA2gIR0CgpH8pkPMCdX2UKGgGR0CcqWZwn6VMaAdN6ANoCEdAoKWxiI+GGnV9lChoBkdAoJAuUt7KJWgHTegDaAhHQKCnZv7WNFV1fZQoaAZHQJ5W/ZK3/gloB03oA2gIR0Cgqg6ClJpWdX2UKGgGR0CgBOC0OVgQaAdN6ANoCEdAoK0LkZJkG3V9lChoBkdAm0cCMPz4DmgHTegDaAhHQKCuQc1fmcR1fZQoaAZHQJq2dvVEuxtoB03oA2gIR0Cgr/uK4x1xdX2UKGgGR0Cdk9gjyFwlaAdN6ANoCEdAoLKsxh2GI3V9lChoBkdAkWsC/9Hc12gHTW0CaAhHQKC1Wc+aBqd1fZQoaAZHQJ1hVrSE12toB03oA2gIR0Cgta4t6HCXdX2UKGgGR0CZI1huO0b+aAdN6ANoCEdAoLbkU0vXb3V9lChoBkdAmz9zUutfX2gHTegDaAhHQKC7R8vVVgh1fZQoaAZHQJjSpGMGX5ZoB03oA2gIR0CgvfKZDzAfdX2UKGgGR0CYYpQ8OkLyaAdN6ANoCEdAoL5GxMWXTnV9lChoBkdAnN2XaakRBmgHTegDaAhHQKC/eVQhwER1fZQoaAZHQJh+N6NVBD5oB03oA2gIR0Cgw94hEBsAdX2UKGgGR0CWuRzVtoBaaAdN6ANoCEdAoMaFrRBu43V9lChoBkdAmYPdL127nWgHTegDaAhHQKDG2zposZp1fZQoaAZHQJiy2CcwxnFoB03oA2gIR0CgyA6GHpKSdX2UKGgGR0CTjp52Qnx8aAdN6ANoCEdAoMxymoBJZnV9lChoBkdAlWBoSUTtcGgHTegDaAhHQKDPHiwSrYJ1fZQoaAZHQJgnB4D9wWFoB03oA2gIR0Cgz3Iq0+khdX2UKGgGR0CX7mUwSJ0oaAdN6ANoCEdAoNCkFjd56nV9lChoBkdAl8CP60pmVmgHTegDaAhHQKDVCTzundh1fZQoaAZHQJQa3MB6rvNoB03oA2gIR0Cg17fXPJJYdX2UKGgGR0CQ52veP7vYaAdN6ANoCEdAoNgNYW+GoXV9lChoBkdAkLdcfvF3p2gHTegDaAhHQKDZQ/9pAUt1fZQoaAZHQJio0iKR+0BoB03oA2gIR0Cg3aVj7Q9idX2UKGgGR0CZ3J0nw5NoaAdN6ANoCEdAoOBM384xUXV9lChoBkdAl3FUYGdI5GgHTegDaAhHQKDgocoYvWZ1fZQoaAZHQJocpSjxkNFoB03oA2gIR0Cg4doJRfnfdX2UKGgGR0CQJY7F85S4aAdN6ANoCEdAoOZUwWWQfnV9lChoBkdAniBqbSZ0CGgHTegDaAhHQKDpB5kbxVh1fZQoaAZHQIIp93ljmS1oB03oA2gIR0Cg6V43m3fAdX2UKGgGR0CT0wQtz0YkaAdN6ANoCEdAoOqUKVpsXXV9lChoBkdAmBXdC3PRiWgHTegDaAhHQKDvDU2kzoF1fZQoaAZHQIr9YjhUBGRoB03oA2gIR0Cg8b4Uvf0mdX2UKGgGR0CRGf22oegdaAdN6ANoCEdAoPIRvFWGRHV9lChoBkdAmrie5SWJJ2gHTegDaAhHQKDzRpgTh5x1fZQoaAZHQJl77j+717JoB03oA2gIR0Cg964oJAt4dX2UKGgGR0CYqP/Ot4iYaAdN6ANoCEdAoPpaeumrKnV9lChoBkdAnAk08NhE0GgHTegDaAhHQKD6rrjYI0J1fZQoaAZHQJJys+2VmjFoB03oA2gIR0Cg++NMPBi1dX2UKGgGR0CV5x47A+INaAdN6ANoCEdAoQBS44Ia+HV9lChoBkdAk9I5Q+EAYGgHTegDaAhHQKEDCK1og3d1fZQoaAZHQJTFLDO1OTJoB03oA2gIR0ChA1+9Ba9sdX2UKGgGR0CQ61eANG3GaAdN6ANoCEdAoQSc/IKc/nV9lChoBkdAjd2wsoUi6mgHTegDaAhHQKEJJvR7Z391fZQoaAZHQIStFPP9kz5oB03oA2gIR0ChC+k6cRUWdX2UKGgGR0CHteCuloDgaAdN6ANoCEdAoQxAE2YOUnV9lChoBkdAlYo4YWLxZ2gHTegDaAhHQKENeEQGwA51fZQoaAZHQI9fGeQMhHNoB03oA2gIR0ChEe5ZB9kSdX2UKGgGR0CQsaCkoF3ZaAdN6ANoCEdAoRSuCNCJGnV9lChoBkdAkeSGShakh2gHTegDaAhHQKEVA5MlC1J1fZQoaAZHQJNvI1hsqKBoB03oA2gIR0ChFjysS00FdX2UKGgGR0CUzsG5tm+TaAdN6ANoCEdAoRq6MrEtNHV9lChoBkdAi04avzOHFmgHTegDaAhHQKEdc7vG6wt1fZQoaAZHQJQol45cTrVoB03oA2gIR0ChHcq/M4cWdX2UKGgGR0CTP6ZpBX0YaAdN6ANoCEdAoR8DeQ+2VnV9lChoBkdAlp55IMBp6GgHTegDaAhHQKEjdEF4cFR1fZQoaAZHQJUZW8jAzpJoB03oA2gIR0ChJiRMvh60dX2UKGgGR0CUrFbbUPQOaAdN6ANoCEdAoSZ5yp71I3V9lChoBkdAmU9xPKuB+WgHTegDaAhHQKEnsTVUdaN1fZQoaAZHQJH5sDW9US9oB03oA2gIR0ChLCXTd+G5dX2UKGgGR0CWMq/FzdULaAdN6ANoCEdAoS7XWMCLdnV9lChoBkdAkrFb+T/yXmgHTegDaAhHQKEvLeVs1sN1fZQoaAZHQJmZl/PPcBVoB03oA2gIR0ChMF/1g6U8dX2UKGgGR0CS/Jt8/lhgaAdN6ANoCEdAoTTGzlcQiHV9lChoBkdAmgdzf3vhImgHTegDaAhHQKE3dMtbs4V1fZQoaAZHQJFyhFWn0kJoB03oA2gIR0ChN8k5p8F7dX2UKGgGR0CVPtxe9i+daAdN6ANoCEdAoTj+8/UvwnVlLg=="
93
  },
94
  "ep_success_buffer": {
95
  ":type:": "<class 'collections.deque'>",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1861b915e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1861b91670>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1861b91700>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1861b91790>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f1861b91820>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f1861b918b0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1861b91940>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1861b919d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f1861b91a60>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1861b91af0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1861b91b80>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1861b91c10>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f1861b92120>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {
 
64
  "_num_timesteps_at_start": 0,
65
  "seed": null,
66
  "action_noise": null,
67
+ "start_time": 1680629094294750469,
68
  "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
  "lr_schedule": {
71
  ":type:": "<class 'function'>",
72
  ":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL2phc29uL21pbmljb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvamFzb24vbWluaWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
73
  },
74
  "_last_obs": {
75
  ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGDhPz8XB6u/vheCvlSabLxG4+s/WbFPP9cp2z5WkkW/tK1dPYLDGD/HOgdAERcVP/rJ+b70P+O/8e5VP+cF+751P90+L4U0Pc4haD4sXX4/QTSYPyj+sD8m1+O+NxKFwNrtgr8+Bw/ANAcoP8/3hL8Uty4+dpCFPwrp4j3UAR2/A/drv9VFPz/YxRnAD4gdvh/wEr+PZD2+RmFIvwgHCL3pm/g/nnISvxOWZz9uAK+7dN9MP8qwQ79ZGui/kgN/vuMe+z7Vdd295a36P7TJOr/YRXo//RnlPjQHKD/P94S/hgD9v0Ilsb8J9qC+iGpZv5/fuj8l1OO+SIE5vsrstz4n2zXAndHQv+hFc787egw+CIjOPzq3z729sWg/c/g9vVCdoT/pXQO/FDkVP8N7gjzfICRA59l2v/tzL7/ZxvG+2EV6P/0Z5T40Byg/am92P5dSWUDaCUI/85qePidQrb8RDz0/E79FwJNIOb8NdiS+AGhpvrNlK7+vOD/Awa2IvEh4CUA5fT28umgTQD+AV7/xz58/4sOJP50sJ0ATqtE87pSdP58eV8BzRpM9qNtiQNrtgr8+Bw/A0wPDv8/3hL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
  },
78
  "_last_episode_starts": {
79
  ":type:": "<class 'numpy.ndarray'>",
 
81
  },
82
  "_last_original_obs": {
83
  ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAcJdK1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcDJIPQAAAABZeey/AAAAAD5jqTwAAAAA/BLfPwAAAAAJBLs9AAAAACDG9D8AAAAA7fr7PQAAAAAvCv2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1wS9tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJX3hz0AAAAA+8v0vwAAAADC+aa9AAAAAChDAUAAAAAAdwPwPAAAAAAUDO4/AAAAAIUs+z0AAAAAU94AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN2fCbcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAqcO49AAAAAAmm6b8AAAAAxtoGvgAAAAAc8tg/AAAAAF28lb0AAAAAebvdPwAAAAAHPyM9AAAAAGoD3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABWiHW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAP/0JPQAAAAA+gOm/AAAAAMQ0h70AAAAAg5rkPwAAAAB5vWs9AAAAAK4C8j8AAAAA/szkPQAAAACmpeW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
  },
86
  "_episode_num": 0,
87
  "use_sde": true,
 
89
  "_current_progress_remaining": 0.0,
90
  "ep_info_buffer": {
91
  ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIukr7sOXmiMAWyUTegDjAF0lEdAnAKtBBzFM3V9lChoBkdAmi2VyFPBSGgHTegDaAhHQJwF86vJRwZ1fZQoaAZHQJxlMmrsByVoB03oA2gIR0CcCH925hBrdX2UKGgGR0CZ/EUSqU/waAdN6ANoCEdAnAokM9bHInV9lChoBkdAm2Atz4k/r2gHTegDaAhHQJwRn0kGA091fZQoaAZHQIb0vFzdUKloB03oA2gIR0CcFNg2606YdX2UKGgGR0CQjJs/pt78aAdN6ANoCEdAnBdlafSQYHV9lChoBkdAnppSqdYnv2gHTegDaAhHQJwZCS9ugpV1fZQoaAZHQKAA97oB7u5oB03oA2gIR0CcIHVoHs1LdX2UKGgGR0CXlS1/DtPYaAdN6ANoCEdAnCOwKF7D23V9lChoBkdAnjyX/Pw/gWgHTegDaAhHQJwmOY+jdpJ1fZQoaAZHQJQbKrCFbmloB03oA2gIR0CcJ9y5I6KcdX2UKGgGR0CgJYL0J4SpaAdN6ANoCEdAnC9NHMEA53V9lChoBkdAoDX9HWjGk2gHTegDaAhHQJwyhhJAdGR1fZQoaAZHQJXd71DjR2NoB03oA2gIR0CcNRSM98qndX2UKGgGR0CeCBD0UXYUaAdN6ANoCEdAnDa4ekpI+XV9lChoBkdAnHC48EFGG2gHTegDaAhHQJw+J/nW8RN1fZQoaAZHQJt+WlenhsJoB03oA2gIR0CcQV/tIClrdX2UKGgGR0CdJp7rLQokaAdN6ANoCEdAnEPraM72c3V9lChoBkdAmg3xxgiNbWgHTegDaAhHQJxFjdTHbRF1fZQoaAZHQJiDpfeDWbxoB03oA2gIR0CcTPzposZpdX2UKGgGR0CVp+KoybhFaAdN6ANoCEdAnFA3p4bCJ3V9lChoBkdAmSAkAtFrmGgHTegDaAhHQJxSxk/bCaZ1fZQoaAZHQJnzrTUiILxoB03oA2gIR0CcVGqZc9nsdX2UKGgGR0CDYaVoHs1LaAdN6ANoCEdAnFvlgDzRQnV9lChoBkdAmklFhTfixWgHTegDaAhHQJxfJBHCoCN1fZQoaAZHQJQYroTwlSloB03oA2gIR0CcYbUIcBEKdX2UKGgGR0CENor6LwWnaAdN6ANoCEdAnGNbWI42j3V9lChoBkdAko1oAOrhi2gHTegDaAhHQJxq0g3cYZV1fZQoaAZHQJTGM4GUwBZoB03oA2gIR0CcbgrQgLZ0dX2UKGgGR0CFKQ9Mbm2caAdN6ANoCEdAnHCZtrKvFHV9lChoBkdAm1SEpZwGW2gHTegDaAhHQJxyQERradt1fZQoaAZHQIfiumBOHnFoB03oA2gIR0Cceb08/2TQdX2UKGgGR0CTEfvZAY51aAdN6ANoCEdAnHz4Gt6ol3V9lChoBkdAlXb7ONYKY2gHTegDaAhHQJx/huAI6bR1fZQoaAZHQImcKQJXyRVoB03oA2gIR0CcgStWuHN5dX2UKGgGR0CXj+ul41P4aAdN6ANoCEdAnIieJk5IYnV9lChoBkdAmXu6tPpIMGgHTegDaAhHQJyL2QfZElV1fZQoaAZHQJmpgeJYT0xoB03oA2gIR0Ccjm3qAz55dX2UKGgGR0CXmK04zabnaAdN6ANoCEdAnJAS/j81oHV9lChoBkdAmcHLCSA6MmgHTegDaAhHQJyXh4lhPTJ1fZQoaAZHQJezA/bCaZxoB03oA2gIR0CcmsXDFZPmdX2UKGgGR0CY/w4zabnYaAdN6ANoCEdAnJ1R/Aj6e3V9lChoBkdAmMcw/1QIlmgHTegDaAhHQJye9lRP4211fZQoaAZHQJlaXFqBVdZoB03oA2gIR0CcpoiTMaCMdX2UKGgGR0CYIco8IRh+aAdN6ANoCEdAnKnRnjABUHV9lChoBkdAgm4ad1+y7mgHTegDaAhHQJysaso2GZh1fZQoaAZHQJXxj7YTTORoB03oA2gIR0CcrhPwd8zAdX2UKGgGR0CZhx0zj3mFaAdN6ANoCEdAnLWUVN5+pnV9lChoBkdAlLRuNT987mgHTegDaAhHQJy42Vs1sLx1fZQoaAZHQJdMEPI4lyBoB03oA2gIR0Ccu3S1maphdX2UKGgGR0COUA0FbFCLaAdN6ANoCEdAnL0mIbfgrHV9lChoBkdAkjVYG2TgVGgHTegDaAhHQJzEsMx46fd1fZQoaAZHQJT4XqHGjsVoB03oA2gIR0Ccx/MpgCwKdX2UKGgGR0CZbvLHMlkZaAdN6ANoCEdAnMqGfseGPHV9lChoBkdAltsSEg4ffWgHTegDaAhHQJzMLwc5sCV1fZQoaAZHQJKmni++M61oB03oA2gIR0Cc07F6zE75dX2UKGgGR0CYhJneizsyaAdN6ANoCEdAnNbwRGtp23V9lChoBkdAmRpTHsC1Z2gHTegDaAhHQJzZgznA6+51fZQoaAZHQJlUxY1YQrdoB03oA2gIR0Cc2ywaisXBdX2UKGgGR0CTzBdCE6DHaAdN6ANoCEdAnOKv1DjR2XV9lChoBkdAkM84w22oemgHTegDaAhHQJzl9MqSX+l1fZQoaAZHQJUMh6gM+eRoB03oA2gIR0Cc6IT3IuGsdX2UKGgGR0CTjEOHFglXaAdN6ANoCEdAnOooHcDbJ3V9lChoBkdAmdsHxz7uUmgHTegDaAhHQJzxnpB5X2d1fZQoaAZHQJczV4/u9e1oB03oA2gIR0Cc9N8tf5UMdX2UKGgGR0CYhH9Nvfj0aAdN6ANoCEdAnPdxoysS03V9lChoBkdAj1+7lq8DjmgHTegDaAhHQJz5GV2Rq491fZQoaAZHQJTid3gUDdRoB03oA2gIR0CdAJyWiUPhdX2UKGgGR0CV0IaTwDvFaAdN6ANoCEdAnQPbe/Ho5nV9lChoBkdAj/Xx6nivPmgHTegDaAhHQJ0GbQyAQQN1fZQoaAZHQJMcaG34Kx9oB03oA2gIR0CdCBOD8LrpdX2UKGgGR0CXqd/x2B8QaAdN6ANoCEdAnQ+JmNBF/nV9lChoBkdAmIYxQWN3n2gHTegDaAhHQJ0SyJ0nw5N1fZQoaAZHQJoGDfCQ9zRoB03oA2gIR0CdFVi1y/9HdX2UKGgGR0CXobVnmJWOaAdN6ANoCEdAnRb95hScb3V9lChoBkdAmK+OYc/+sGgHTegDaAhHQJ0edJ5E+gV1fZQoaAZHQJluVFRYRuloB03oA2gIR0CdIa8IAwPAdX2UKGgGR0CZ6qOo5xR3aAdN6ANoCEdAnSQ6jSG8EnV9lChoBkdAm1qPsRg7YGgHTegDaAhHQJ0l3vgFX7t1fZQoaAZHQJQ5U8W9DhNoB03oA2gIR0CdLWHFxXGPdX2UKGgGR0CUZyEJjUd8aAdN6ANoCEdAnTCefdyksXV9lChoBkdAkyQlK02LpGgHTegDaAhHQJ0zLHS4OMF1fZQoaAZHQJWNb+98JD5oB03oA2gIR0CdNNGn4wh4dX2UKGgGR0CZNeEbo8p1aAdN6ANoCEdAnTxFsDW9UXV9lChoBkdAkB3oW1twaWgHTegDaAhHQJ0/ftRekYZ1fZQoaAZHQJV3ESHuZ1FoB03oA2gIR0CdQg28Zk08dX2UKGgGR0CW2yK02LpBaAdN6ANoCEdAnUOxsyi22HV9lChoBkdAmBgOwC8vmGgHTegDaAhHQJ1LIhOgxrV1fZQoaAZHQJkrY3vQWvdoB03oA2gIR0CdTlcPe54GdX2UKGgGR0CUpSexfOUuaAdN6ANoCEdAnVDjPBzmwXV9lChoBkdAmXXPRZ2ZA2gHTegDaAhHQJ1SicjJMg51fZQoaAZHQJPAi6lLvkRoB03oA2gIR0CdWf32EkB0dX2UKGgGR0CWwiJv5xioaAdN6ANoCEdAnV05Rjz7M3V9lChoBkdAlzP3dXT3I2gHTegDaAhHQJ1fybG3nZF1fZQoaAZHQJU9yTGHYYloB03oA2gIR0CdYXFuNxVAdX2UKGgGR0CNp7lFtsN2aAdN6ANoCEdAnWj7u+h4+3V9lChoBkdAjgFcaOxSpGgHTegDaAhHQJ1sO4ZuQ6p1fZQoaAZHQJPTZVS4vvloB03oA2gIR0CdbtQpnYg8dX2UKGgGR0CLCGGmk30gaAdN6ANoCEdAnXCC8BdUsHVlLg=="
93
  },
94
  "ep_success_buffer": {
95
  ":type:": "<class 'collections.deque'>",
a2c-AntBulletEnv-v0/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6727978a3bcd0258ba48d5cca32b828f3f70d3581b8698e958af55fb7dcf795d
3
  size 56190
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2b863719f11a30bb733324febbcb54d89f35dac396a4e4faa4ddf047ca46471
3
  size 56190
a2c-AntBulletEnv-v0/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1fdf2cf41802fee4ea0376a8ecde345b0848ec345e77c51e07fb113ff486a67f
3
  size 56958
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca0bda2a651ad7a130538469ae70aeafb161563c0bd9c59b8f14efe536ec9526
3
  size 56958
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6ca0bd4ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6ca0bd4d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6ca0bd4dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6ca0bd4e50>", "_build": "<function ActorCriticPolicy._build at 0x7f6ca0bd4ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6ca0bd4f70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6ca0bda040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6ca0bda0d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6ca0bda160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6ca0bda1f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6ca0bda280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6ca0bda310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6ca0bccfc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680581868518317749, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL2phc29uL21pbmljb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvamFzb24vbWluaWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOaS0z+0l+E/zlJIv2Exvz2WNQZAv/Zlv7OSGkDh9Sw+SthBP0y/hLwiani+BhkeQDsvJj+fpRDAj1oYwNPukb9Mhtc+rjiLv05dHT96qug8dF1FP2L2+72zG3C/jr5YwH1gmr/RYBXAVEgCP0p+hr+CA3Y+ptSXPw6fBj6zAag/bIPYvSLJCr/Eo+s+fV89v6DWQz8AqW9A+D5tP7Uklb+/Y4W+rSPXPzniwDxZPmw/05pKveCJRD9kxD0/jET4PypiSL4053s/5U5Ev16keT98QlQ/2FzbPlRIAj9Kfoa/Rbu0vm55Sr9ptIU+GugHPx6FzD+Dcwc/b+ksPbubc7+LYtE+qPsSP6426T6x+QQ/dC6Sv+RZ0L96nsg+GFZlvzNf+T4HRIC/ouAlP/q8sT9Nqsq+YXEkv0cBZL8orJk9fEJUP9FgFcBUSAI/Sn6Gv66CFr9MTgdA4JgZwBCRUr9FBD5A/wwFv9HX+TwfLc0/2q0QPUxynL9E542/QM74u1Bl6z+e09C5cGCMv/TK+L0hvlO/gP9+Pyu5g7+dpiK/gdekP/lSiL/Zf22/3OKwvH1gmr/YXNs+VEgCP+6jcz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB9KqW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAlnJ2vQAAAACIkvm/AAAAAOJSK70AAAAAtin7PwAAAADQoPO9AAAAADtR8j8AAAAAMnjVPQAAAADsctu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkiXMNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMVAq70AAAAAdP/8vwAAAABRja27AAAAAOe73j8AAAAA7ObXPQAAAACFA/4/AAAAAOeSpb0AAAAArCztvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI+7UzUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID/1Qy+AAAAAH8R7r8AAAAAsVoIvQAAAAAX3fo/AAAAAOQOHb0AAAAAZEP2PwAAAABUbhs9AAAAAJ4l9r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABaoY22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACADQRkPQAAAADxKgDAAAAAAHF8rr0AAAAA577jPwAAAABDdwC+AAAAAEUTAEAAAAAArhG3vQAAAAAv/eG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJr9jSofjjuMAWyUTegDjAF0lEdAoGU13IMjNnV9lChoBkdAl87TdDYywmgHTegDaAhHQKBoQIF/x2B1fZQoaAZHQJGUUIiTt9hoB03oA2gIR0CgaXf1YhdMdX2UKGgGR0CTQqQNkOI7aAdN6ANoCEdAoGsx/EwWWXV9lChoBkdAleCeXiR4hWgHTegDaAhHQKBt46mO2iN1fZQoaAZHQJz1y1rqMWJoB03oA2gIR0CgcOmJN0vHdX2UKGgGR0CQL1K5CngpaAdN6ANoCEdAoHIhjBl+VnV9lChoBkdAmd+ScPOIImgHTegDaAhHQKBz2YJE6T51fZQoaAZHQJaDPviLl3hoB03oA2gIR0CgdoioS+QEdX2UKGgGR0CTbRioKlYVaAdN6ANoCEdAoHmDp3X7L3V9lChoBkdAnau9foicG2gHTegDaAhHQKB6uID5j6N1fZQoaAZHQI1lYlhPTG5oB03oA2gIR0CgfHAWrOqvdX2UKGgGR0CPdapo9LYgaAdN6ANoCEdAoH8ZUrCm/HV9lChoBkdAnA6stsenymgHTegDaAhHQKCCFF2mpER1fZQoaAZHQJz8lcB2fTVoB03oA2gIR0Cgg0e2d/aydX2UKGgGR0Cbby6jnFHbaAdN6ANoCEdAoIT/3ta6jHV9lChoBkdAm+c64+bExmgHTegDaAhHQKCHsSFoL5R1fZQoaAZHQJx6HgQ6IWRoB03oA2gIR0CgirCEpRXPdX2UKGgGR0CdT6MAWBSUaAdN6ANoCEdAoIvnAGjbjHV9lChoBkdAmb0Q0j1PFmgHTegDaAhHQKCNoCJ40Mx1fZQoaAZHQJjpb/NqxkdoB03oA2gIR0CgkE86vJRwdX2UKGgGR0CeRBRISUTtaAdN6ANoCEdAoJNNbLU1AXV9lChoBkdAnuwWBSUC72gHTegDaAhHQKCUgcZLqUx1fZQoaAZHQJ7CmCJ40MxoB03oA2gIR0CgljlBIFvAdX2UKGgGR0CbPcVbA1vVaAdN6ANoCEdAoJjnnfVI7XV9lChoBkdAh7XntWuHOGgHTegDaAhHQKCb65R0lqt1fZQoaAZHQJl5OF23azxoB03oA2gIR0CgnR+mWMS9dX2UKGgGR0Cfxq1UlzEKaAdN6ANoCEdAoJ7Z42S+xnV9lChoBkdAnuzrhNucc2gHTegDaAhHQKChhBwdbPh1fZQoaAZHQJ+Fhm6GxlhoB03oA2gIR0CgpH8pkPMCdX2UKGgGR0CcqWZwn6VMaAdN6ANoCEdAoKWxiI+GGnV9lChoBkdAoJAuUt7KJWgHTegDaAhHQKCnZv7WNFV1fZQoaAZHQJ5W/ZK3/gloB03oA2gIR0Cgqg6ClJpWdX2UKGgGR0CgBOC0OVgQaAdN6ANoCEdAoK0LkZJkG3V9lChoBkdAm0cCMPz4DmgHTegDaAhHQKCuQc1fmcR1fZQoaAZHQJq2dvVEuxtoB03oA2gIR0Cgr/uK4x1xdX2UKGgGR0Cdk9gjyFwlaAdN6ANoCEdAoLKsxh2GI3V9lChoBkdAkWsC/9Hc12gHTW0CaAhHQKC1Wc+aBqd1fZQoaAZHQJ1hVrSE12toB03oA2gIR0Cgta4t6HCXdX2UKGgGR0CZI1huO0b+aAdN6ANoCEdAoLbkU0vXb3V9lChoBkdAmz9zUutfX2gHTegDaAhHQKC7R8vVVgh1fZQoaAZHQJjSpGMGX5ZoB03oA2gIR0CgvfKZDzAfdX2UKGgGR0CYYpQ8OkLyaAdN6ANoCEdAoL5GxMWXTnV9lChoBkdAnN2XaakRBmgHTegDaAhHQKC/eVQhwER1fZQoaAZHQJh+N6NVBD5oB03oA2gIR0Cgw94hEBsAdX2UKGgGR0CWuRzVtoBaaAdN6ANoCEdAoMaFrRBu43V9lChoBkdAmYPdL127nWgHTegDaAhHQKDG2zposZp1fZQoaAZHQJiy2CcwxnFoB03oA2gIR0CgyA6GHpKSdX2UKGgGR0CTjp52Qnx8aAdN6ANoCEdAoMxymoBJZnV9lChoBkdAlWBoSUTtcGgHTegDaAhHQKDPHiwSrYJ1fZQoaAZHQJgnB4D9wWFoB03oA2gIR0Cgz3Iq0+khdX2UKGgGR0CX7mUwSJ0oaAdN6ANoCEdAoNCkFjd56nV9lChoBkdAl8CP60pmVmgHTegDaAhHQKDVCTzundh1fZQoaAZHQJQa3MB6rvNoB03oA2gIR0Cg17fXPJJYdX2UKGgGR0CQ52veP7vYaAdN6ANoCEdAoNgNYW+GoXV9lChoBkdAkLdcfvF3p2gHTegDaAhHQKDZQ/9pAUt1fZQoaAZHQJio0iKR+0BoB03oA2gIR0Cg3aVj7Q9idX2UKGgGR0CZ3J0nw5NoaAdN6ANoCEdAoOBM384xUXV9lChoBkdAl3FUYGdI5GgHTegDaAhHQKDgocoYvWZ1fZQoaAZHQJocpSjxkNFoB03oA2gIR0Cg4doJRfnfdX2UKGgGR0CQJY7F85S4aAdN6ANoCEdAoOZUwWWQfnV9lChoBkdAniBqbSZ0CGgHTegDaAhHQKDpB5kbxVh1fZQoaAZHQIIp93ljmS1oB03oA2gIR0Cg6V43m3fAdX2UKGgGR0CT0wQtz0YkaAdN6ANoCEdAoOqUKVpsXXV9lChoBkdAmBXdC3PRiWgHTegDaAhHQKDvDU2kzoF1fZQoaAZHQIr9YjhUBGRoB03oA2gIR0Cg8b4Uvf0mdX2UKGgGR0CRGf22oegdaAdN6ANoCEdAoPIRvFWGRHV9lChoBkdAmrie5SWJJ2gHTegDaAhHQKDzRpgTh5x1fZQoaAZHQJl77j+717JoB03oA2gIR0Cg964oJAt4dX2UKGgGR0CYqP/Ot4iYaAdN6ANoCEdAoPpaeumrKnV9lChoBkdAnAk08NhE0GgHTegDaAhHQKD6rrjYI0J1fZQoaAZHQJJys+2VmjFoB03oA2gIR0Cg++NMPBi1dX2UKGgGR0CV5x47A+INaAdN6ANoCEdAoQBS44Ia+HV9lChoBkdAk9I5Q+EAYGgHTegDaAhHQKEDCK1og3d1fZQoaAZHQJTFLDO1OTJoB03oA2gIR0ChA1+9Ba9sdX2UKGgGR0CQ61eANG3GaAdN6ANoCEdAoQSc/IKc/nV9lChoBkdAjd2wsoUi6mgHTegDaAhHQKEJJvR7Z391fZQoaAZHQIStFPP9kz5oB03oA2gIR0ChC+k6cRUWdX2UKGgGR0CHteCuloDgaAdN6ANoCEdAoQxAE2YOUnV9lChoBkdAlYo4YWLxZ2gHTegDaAhHQKENeEQGwA51fZQoaAZHQI9fGeQMhHNoB03oA2gIR0ChEe5ZB9kSdX2UKGgGR0CQsaCkoF3ZaAdN6ANoCEdAoRSuCNCJGnV9lChoBkdAkeSGShakh2gHTegDaAhHQKEVA5MlC1J1fZQoaAZHQJNvI1hsqKBoB03oA2gIR0ChFjysS00FdX2UKGgGR0CUzsG5tm+TaAdN6ANoCEdAoRq6MrEtNHV9lChoBkdAi04avzOHFmgHTegDaAhHQKEdc7vG6wt1fZQoaAZHQJQol45cTrVoB03oA2gIR0ChHcq/M4cWdX2UKGgGR0CTP6ZpBX0YaAdN6ANoCEdAoR8DeQ+2VnV9lChoBkdAlp55IMBp6GgHTegDaAhHQKEjdEF4cFR1fZQoaAZHQJUZW8jAzpJoB03oA2gIR0ChJiRMvh60dX2UKGgGR0CUrFbbUPQOaAdN6ANoCEdAoSZ5yp71I3V9lChoBkdAmU9xPKuB+WgHTegDaAhHQKEnsTVUdaN1fZQoaAZHQJH5sDW9US9oB03oA2gIR0ChLCXTd+G5dX2UKGgGR0CWMq/FzdULaAdN6ANoCEdAoS7XWMCLdnV9lChoBkdAkrFb+T/yXmgHTegDaAhHQKEvLeVs1sN1fZQoaAZHQJmZl/PPcBVoB03oA2gIR0ChMF/1g6U8dX2UKGgGR0CS/Jt8/lhgaAdN6ANoCEdAoTTGzlcQiHV9lChoBkdAmgdzf3vhImgHTegDaAhHQKE3dMtbs4V1fZQoaAZHQJFyhFWn0kJoB03oA2gIR0ChN8k5p8F7dX2UKGgGR0CVPtxe9i+daAdN6ANoCEdAoTj+8/UvwnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.0-41-generic-x86_64-with-glibc2.10 # 44~20.04.1-Ubuntu SMP Fri Jun 24 13:27:29 UTC 2022", "Python": "3.8.12", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu117", "GPU Enabled": "True", "Numpy": "1.24.2", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1861b915e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1861b91670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1861b91700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1861b91790>", "_build": "<function ActorCriticPolicy._build at 0x7f1861b91820>", "forward": "<function ActorCriticPolicy.forward at 0x7f1861b918b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1861b91940>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1861b919d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1861b91a60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1861b91af0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1861b91b80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1861b91c10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1861b92120>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680629094294750469, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL2phc29uL21pbmljb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvamFzb24vbWluaWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGDhPz8XB6u/vheCvlSabLxG4+s/WbFPP9cp2z5WkkW/tK1dPYLDGD/HOgdAERcVP/rJ+b70P+O/8e5VP+cF+751P90+L4U0Pc4haD4sXX4/QTSYPyj+sD8m1+O+NxKFwNrtgr8+Bw/ANAcoP8/3hL8Uty4+dpCFPwrp4j3UAR2/A/drv9VFPz/YxRnAD4gdvh/wEr+PZD2+RmFIvwgHCL3pm/g/nnISvxOWZz9uAK+7dN9MP8qwQ79ZGui/kgN/vuMe+z7Vdd295a36P7TJOr/YRXo//RnlPjQHKD/P94S/hgD9v0Ilsb8J9qC+iGpZv5/fuj8l1OO+SIE5vsrstz4n2zXAndHQv+hFc787egw+CIjOPzq3z729sWg/c/g9vVCdoT/pXQO/FDkVP8N7gjzfICRA59l2v/tzL7/ZxvG+2EV6P/0Z5T40Byg/am92P5dSWUDaCUI/85qePidQrb8RDz0/E79FwJNIOb8NdiS+AGhpvrNlK7+vOD/Awa2IvEh4CUA5fT28umgTQD+AV7/xz58/4sOJP50sJ0ATqtE87pSdP58eV8BzRpM9qNtiQNrtgr8+Bw/A0wPDv8/3hL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAcJdK1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcDJIPQAAAABZeey/AAAAAD5jqTwAAAAA/BLfPwAAAAAJBLs9AAAAACDG9D8AAAAA7fr7PQAAAAAvCv2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1wS9tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJX3hz0AAAAA+8v0vwAAAADC+aa9AAAAAChDAUAAAAAAdwPwPAAAAAAUDO4/AAAAAIUs+z0AAAAAU94AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN2fCbcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAqcO49AAAAAAmm6b8AAAAAxtoGvgAAAAAc8tg/AAAAAF28lb0AAAAAebvdPwAAAAAHPyM9AAAAAGoD3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABWiHW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAP/0JPQAAAAA+gOm/AAAAAMQ0h70AAAAAg5rkPwAAAAB5vWs9AAAAAK4C8j8AAAAA/szkPQAAAACmpeW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIukr7sOXmiMAWyUTegDjAF0lEdAnAKtBBzFM3V9lChoBkdAmi2VyFPBSGgHTegDaAhHQJwF86vJRwZ1fZQoaAZHQJxlMmrsByVoB03oA2gIR0CcCH925hBrdX2UKGgGR0CZ/EUSqU/waAdN6ANoCEdAnAokM9bHInV9lChoBkdAm2Atz4k/r2gHTegDaAhHQJwRn0kGA091fZQoaAZHQIb0vFzdUKloB03oA2gIR0CcFNg2606YdX2UKGgGR0CQjJs/pt78aAdN6ANoCEdAnBdlafSQYHV9lChoBkdAnppSqdYnv2gHTegDaAhHQJwZCS9ugpV1fZQoaAZHQKAA97oB7u5oB03oA2gIR0CcIHVoHs1LdX2UKGgGR0CXlS1/DtPYaAdN6ANoCEdAnCOwKF7D23V9lChoBkdAnjyX/Pw/gWgHTegDaAhHQJwmOY+jdpJ1fZQoaAZHQJQbKrCFbmloB03oA2gIR0CcJ9y5I6KcdX2UKGgGR0CgJYL0J4SpaAdN6ANoCEdAnC9NHMEA53V9lChoBkdAoDX9HWjGk2gHTegDaAhHQJwyhhJAdGR1fZQoaAZHQJXd71DjR2NoB03oA2gIR0CcNRSM98qndX2UKGgGR0CeCBD0UXYUaAdN6ANoCEdAnDa4ekpI+XV9lChoBkdAnHC48EFGG2gHTegDaAhHQJw+J/nW8RN1fZQoaAZHQJt+WlenhsJoB03oA2gIR0CcQV/tIClrdX2UKGgGR0CdJp7rLQokaAdN6ANoCEdAnEPraM72c3V9lChoBkdAmg3xxgiNbWgHTegDaAhHQJxFjdTHbRF1fZQoaAZHQJiDpfeDWbxoB03oA2gIR0CcTPzposZpdX2UKGgGR0CVp+KoybhFaAdN6ANoCEdAnFA3p4bCJ3V9lChoBkdAmSAkAtFrmGgHTegDaAhHQJxSxk/bCaZ1fZQoaAZHQJnzrTUiILxoB03oA2gIR0CcVGqZc9nsdX2UKGgGR0CDYaVoHs1LaAdN6ANoCEdAnFvlgDzRQnV9lChoBkdAmklFhTfixWgHTegDaAhHQJxfJBHCoCN1fZQoaAZHQJQYroTwlSloB03oA2gIR0CcYbUIcBEKdX2UKGgGR0CENor6LwWnaAdN6ANoCEdAnGNbWI42j3V9lChoBkdAko1oAOrhi2gHTegDaAhHQJxq0g3cYZV1fZQoaAZHQJTGM4GUwBZoB03oA2gIR0CcbgrQgLZ0dX2UKGgGR0CFKQ9Mbm2caAdN6ANoCEdAnHCZtrKvFHV9lChoBkdAm1SEpZwGW2gHTegDaAhHQJxyQERradt1fZQoaAZHQIfiumBOHnFoB03oA2gIR0Cceb08/2TQdX2UKGgGR0CTEfvZAY51aAdN6ANoCEdAnHz4Gt6ol3V9lChoBkdAlXb7ONYKY2gHTegDaAhHQJx/huAI6bR1fZQoaAZHQImcKQJXyRVoB03oA2gIR0CcgStWuHN5dX2UKGgGR0CXj+ul41P4aAdN6ANoCEdAnIieJk5IYnV9lChoBkdAmXu6tPpIMGgHTegDaAhHQJyL2QfZElV1fZQoaAZHQJmpgeJYT0xoB03oA2gIR0Ccjm3qAz55dX2UKGgGR0CXmK04zabnaAdN6ANoCEdAnJAS/j81oHV9lChoBkdAmcHLCSA6MmgHTegDaAhHQJyXh4lhPTJ1fZQoaAZHQJezA/bCaZxoB03oA2gIR0CcmsXDFZPmdX2UKGgGR0CY/w4zabnYaAdN6ANoCEdAnJ1R/Aj6e3V9lChoBkdAmMcw/1QIlmgHTegDaAhHQJye9lRP4211fZQoaAZHQJlaXFqBVdZoB03oA2gIR0CcpoiTMaCMdX2UKGgGR0CYIco8IRh+aAdN6ANoCEdAnKnRnjABUHV9lChoBkdAgm4ad1+y7mgHTegDaAhHQJysaso2GZh1fZQoaAZHQJXxj7YTTORoB03oA2gIR0CcrhPwd8zAdX2UKGgGR0CZhx0zj3mFaAdN6ANoCEdAnLWUVN5+pnV9lChoBkdAlLRuNT987mgHTegDaAhHQJy42Vs1sLx1fZQoaAZHQJdMEPI4lyBoB03oA2gIR0Ccu3S1maphdX2UKGgGR0COUA0FbFCLaAdN6ANoCEdAnL0mIbfgrHV9lChoBkdAkjVYG2TgVGgHTegDaAhHQJzEsMx46fd1fZQoaAZHQJT4XqHGjsVoB03oA2gIR0Ccx/MpgCwKdX2UKGgGR0CZbvLHMlkZaAdN6ANoCEdAnMqGfseGPHV9lChoBkdAltsSEg4ffWgHTegDaAhHQJzMLwc5sCV1fZQoaAZHQJKmni++M61oB03oA2gIR0Cc07F6zE75dX2UKGgGR0CYhJneizsyaAdN6ANoCEdAnNbwRGtp23V9lChoBkdAmRpTHsC1Z2gHTegDaAhHQJzZgznA6+51fZQoaAZHQJlUxY1YQrdoB03oA2gIR0Cc2ywaisXBdX2UKGgGR0CTzBdCE6DHaAdN6ANoCEdAnOKv1DjR2XV9lChoBkdAkM84w22oemgHTegDaAhHQJzl9MqSX+l1fZQoaAZHQJUMh6gM+eRoB03oA2gIR0Cc6IT3IuGsdX2UKGgGR0CTjEOHFglXaAdN6ANoCEdAnOooHcDbJ3V9lChoBkdAmdsHxz7uUmgHTegDaAhHQJzxnpB5X2d1fZQoaAZHQJczV4/u9e1oB03oA2gIR0Cc9N8tf5UMdX2UKGgGR0CYhH9Nvfj0aAdN6ANoCEdAnPdxoysS03V9lChoBkdAj1+7lq8DjmgHTegDaAhHQJz5GV2Rq491fZQoaAZHQJTid3gUDdRoB03oA2gIR0CdAJyWiUPhdX2UKGgGR0CV0IaTwDvFaAdN6ANoCEdAnQPbe/Ho5nV9lChoBkdAj/Xx6nivPmgHTegDaAhHQJ0GbQyAQQN1fZQoaAZHQJMcaG34Kx9oB03oA2gIR0CdCBOD8LrpdX2UKGgGR0CXqd/x2B8QaAdN6ANoCEdAnQ+JmNBF/nV9lChoBkdAmIYxQWN3n2gHTegDaAhHQJ0SyJ0nw5N1fZQoaAZHQJoGDfCQ9zRoB03oA2gIR0CdFVi1y/9HdX2UKGgGR0CXobVnmJWOaAdN6ANoCEdAnRb95hScb3V9lChoBkdAmK+OYc/+sGgHTegDaAhHQJ0edJ5E+gV1fZQoaAZHQJluVFRYRuloB03oA2gIR0CdIa8IAwPAdX2UKGgGR0CZ6qOo5xR3aAdN6ANoCEdAnSQ6jSG8EnV9lChoBkdAm1qPsRg7YGgHTegDaAhHQJ0l3vgFX7t1fZQoaAZHQJQ5U8W9DhNoB03oA2gIR0CdLWHFxXGPdX2UKGgGR0CUZyEJjUd8aAdN6ANoCEdAnTCefdyksXV9lChoBkdAkyQlK02LpGgHTegDaAhHQJ0zLHS4OMF1fZQoaAZHQJWNb+98JD5oB03oA2gIR0CdNNGn4wh4dX2UKGgGR0CZNeEbo8p1aAdN6ANoCEdAnTxFsDW9UXV9lChoBkdAkB3oW1twaWgHTegDaAhHQJ0/ftRekYZ1fZQoaAZHQJV3ESHuZ1FoB03oA2gIR0CdQg28Zk08dX2UKGgGR0CW2yK02LpBaAdN6ANoCEdAnUOxsyi22HV9lChoBkdAmBgOwC8vmGgHTegDaAhHQJ1LIhOgxrV1fZQoaAZHQJkrY3vQWvdoB03oA2gIR0CdTlcPe54GdX2UKGgGR0CUpSexfOUuaAdN6ANoCEdAnVDjPBzmwXV9lChoBkdAmXXPRZ2ZA2gHTegDaAhHQJ1SicjJMg51fZQoaAZHQJPAi6lLvkRoB03oA2gIR0CdWf32EkB0dX2UKGgGR0CWwiJv5xioaAdN6ANoCEdAnV05Rjz7M3V9lChoBkdAlzP3dXT3I2gHTegDaAhHQJ1fybG3nZF1fZQoaAZHQJU9yTGHYYloB03oA2gIR0CdYXFuNxVAdX2UKGgGR0CNp7lFtsN2aAdN6ANoCEdAnWj7u+h4+3V9lChoBkdAjgFcaOxSpGgHTegDaAhHQJ1sO4ZuQ6p1fZQoaAZHQJPTZVS4vvloB03oA2gIR0CdbtQpnYg8dX2UKGgGR0CLCGGmk30gaAdN6ANoCEdAnXCC8BdUsHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.0-41-generic-x86_64-with-glibc2.10 # 44~20.04.1-Ubuntu SMP Fri Jun 24 13:27:29 UTC 2022", "Python": "3.8.12", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu117", "GPU Enabled": "True", "Numpy": "1.24.2", "Gym": "0.21.0"}}
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:38311f179cee80d679dbc9fd3032ffa6476c58713e0fab1aeecdf2eeaae86c04
3
- size 1008064
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89c68452bbc2e827ffc414f118a74e9c11e3a30cc34d29c1171be51cbe7e706f
3
+ size 1065747
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 1270.177660493739, "std_reward": 150.9003244420329, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-03T22:37:05.914832"}
 
1
+ {"mean_reward": 1116.9342614833847, "std_reward": 147.50323125825702, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-04T10:56:30.062483"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2914a188cf477cca9a911dd04dc33a6771dd9038f1d2089135d26ec208be3d4c
3
- size 2521
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f65ddbde6d23f231d4923d54c562364d36fb8d3e81a6f5b4d70343ebc549371
3
+ size 2136