antonlabate
ver 1.3
d758c99
import dataclasses
import json
import logging
import os
from dataclasses import dataclass, field
from typing import Any, Dict, Optional, Tuple
from transformers.file_utils import cached_property, is_torch_available, is_torch_tpu_available, torch_required
if is_torch_available():
import torch
if is_torch_tpu_available():
import torch_xla.core.xla_model as xm
logger = logging.getLogger(__name__)
def default_logdir() -> str:
"""
Same default as PyTorch
"""
import socket
from datetime import datetime
current_time = datetime.now().strftime("%b%d_%H-%M-%S")
return os.path.join("runs", current_time + "_" + socket.gethostname())
@dataclass
class TrainingArguments:
"""
TrainingArguments is the subset of the arguments we use in our example scripts
**which relate to the training loop itself**.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
output_dir: str = field(
metadata={"help": "The output directory where the model predictions and checkpoints will be written."}
)
overwrite_output_dir: bool = field(
default=False,
metadata={
"help": (
"Overwrite the content of the output directory."
"Use this to continue training if output_dir points to a checkpoint directory."
)
},
)
do_train: bool = field(default=False, metadata={"help": "Whether to run training."})
do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."})
do_predict: bool = field(default=False, metadata={"help": "Whether to run predictions on the test set."})
evaluate_during_training: bool = field(
default=False, metadata={"help": "Run evaluation during training at each logging step."},
)
per_device_train_batch_size: int = field(
default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."}
)
per_device_eval_batch_size: int = field(
default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."}
)
per_gpu_train_batch_size: Optional[int] = field(
default=None,
metadata={
"help": "Deprecated, the use of `--per_device_train_batch_size` is preferred. "
"Batch size per GPU/TPU core/CPU for training."
},
)
per_gpu_eval_batch_size: Optional[int] = field(
default=None,
metadata={
"help": "Deprecated, the use of `--per_device_eval_batch_size` is preferred."
"Batch size per GPU/TPU core/CPU for evaluation."
},
)
gradient_accumulation_steps: int = field(
default=1,
metadata={"help": "Number of updates steps to accumulate before performing a backward/update pass."},
)
learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for Adam."})
weight_decay: float = field(default=0.0, metadata={"help": "Weight decay if we apply some."})
adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for Adam optimizer."})
max_grad_norm: float = field(default=1.0, metadata={"help": "Max gradient norm."})
num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."})
max_steps: int = field(
default=-1,
metadata={"help": "If > 0: set total number of training steps to perform. Override num_train_epochs."},
)
warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."})
logging_tqdm: bool = field(default=False, metadata={"help": "Show tqdm or not."})
eval_steps: int = field(default=500, metadata={"help": "Run validation every X updates steps."})
logging_dir: Optional[str] = field(default_factory=default_logdir, metadata={"help": "Tensorboard log dir."})
logging_first_step: bool = field(default=False, metadata={"help": "Log and eval the first global_step"})
logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."})
save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."})
save_total_limit: Optional[int] = field(
default=None,
metadata={
"help": (
"Limit the total amount of checkpoints."
"Deletes the older checkpoints in the output_dir. Default is unlimited checkpoints"
)
},
)
no_cuda: bool = field(default=False, metadata={"help": "Do not use CUDA even when it is available"})
seed: int = field(default=42, metadata={"help": "random seed for initialization"})
fp16: bool = field(
default=False,
metadata={"help": "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit"},
)
fp16_opt_level: str = field(
default="O1",
metadata={
"help": (
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html"
)
},
)
local_rank: int = field(default=-1, metadata={"help": "For distributed training: local_rank"})
tpu_num_cores: Optional[int] = field(
default=None, metadata={"help": "TPU: Number of TPU cores (automatically passed by launcher script)"}
)
tpu_metrics_debug: bool = field(default=False, metadata={"help": "TPU: Whether to print debug metrics"})
dataloader_drop_last: bool = field(
default=False, metadata={"help": "Drop the last incomplete batch if it is not divisible by the batch size."}
)
@property
def train_batch_size(self) -> int:
if self.per_gpu_train_batch_size:
logger.warning(
"Using deprecated `--per_gpu_train_batch_size` argument which will be removed in a future "
"version. Using `--per_device_train_batch_size` is preferred."
)
per_device_batch_size = self.per_gpu_train_batch_size or self.per_device_train_batch_size
return per_device_batch_size * max(1, self.n_gpu)
@property
def eval_batch_size(self) -> int:
if self.per_gpu_eval_batch_size:
logger.warning(
"Using deprecated `--per_gpu_eval_batch_size` argument which will be removed in a future "
"version. Using `--per_device_eval_batch_size` is preferred."
)
per_device_batch_size = self.per_gpu_eval_batch_size or self.per_device_eval_batch_size
return per_device_batch_size * max(1, self.n_gpu)
@cached_property
@torch_required
def _setup_devices(self) -> Tuple["torch.device", int]:
logger.info("PyTorch: setting up devices")
if self.no_cuda:
device = torch.device("cpu")
n_gpu = 0
elif is_torch_tpu_available():
device = xm.xla_device()
n_gpu = 0
elif self.local_rank == -1:
# if n_gpu is > 1 we'll use nn.DataParallel.
# If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0`
# Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will
# trigger an error that a device index is missing. Index 0 takes into account the
# GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0`
# will use the first GPU in that env, i.e. GPU#1
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
else:
# Here, we'll use torch.distributed.
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend="nccl")
device = torch.device("cuda", self.local_rank)
n_gpu = 1
if device.type == "cuda":
torch.cuda.set_device(device)
return device, n_gpu
@property
@torch_required
def device(self) -> "torch.device":
return self._setup_devices[0]
@property
@torch_required
def n_gpu(self):
return self._setup_devices[1]
def to_json_string(self):
"""
Serializes this instance to a JSON string.
"""
return json.dumps(dataclasses.asdict(self), indent=2)
def to_sanitized_dict(self) -> Dict[str, Any]:
"""
Sanitized serialization to use with TensorBoard’s hparams
"""
d = dataclasses.asdict(self)
valid_types = [bool, int, float, str]
if is_torch_available():
valid_types.append(torch.Tensor)
return {k: v if type(v) in valid_types else str(v) for k, v in d.items()}