cahya's picture
updated the generator to use temperature and sample
2be9212
|
raw
history blame
1.81 kB
---
language: id
tags:
- pipeline:summarization
- summarization
- bert2bert
datasets:
- id_liputan6
license: apache-2.0
---
# Indonesian BERT2BERT Summarization Model
Finetuned BERT-base summarization model for Indonesian.
## Finetuning Corpus
`bert2bert-indonesian-summarization` model is based on `cahya/bert-base-indonesian-1.5G` by [cahya](https://huggingface.co/cahya), finetuned using [id_liputan6](https://huggingface.co/datasets/id_liputan6) dataset.
## Load Finetuned Model
```python
from transformers import BertTokenizer, EncoderDecoderModel
tokenizer = BertTokenizer.from_pretrained("cahya/bert2bert-indonesian-summarization")
tokenizer.bos_token = tokenizer.cls_token
tokenizer.eos_token = tokenizer.sep_token
model = EncoderDecoderModel.from_pretrained("cahya/bert2bert-indonesian-summarization")
```
## Code Sample
```python
from transformers import BertTokenizer, EncoderDecoderModel
tokenizer = BertTokenizer.from_pretrained("cahya/bert2bert-indonesian-summarization")
tokenizer.bos_token = tokenizer.cls_token
tokenizer.eos_token = tokenizer.sep_token
model = EncoderDecoderModel.from_pretrained("cahya/bert2bert-indonesian-summarization")
#
ARTICLE_TO_SUMMARIZE = ""
# generate summary
input_ids = tokenizer.encode(ARTICLE_TO_SUMMARIZE, return_tensors='pt')
summary_ids = model.generate(input_ids,
min_length=20,
max_length=80,
num_beams=10,
repetition_penalty=2.5,
length_penalty=1.0,
early_stopping=True,
no_repeat_ngram_size=2,
use_cache=True,
do_sample = True,
temperature = 0.8,
top_k = 50,
top_p = 0.95)
summary_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
print(summary_text)
```
Output:
```
```