whisper-indic-audio-abuse-feature
This model is a fine-tuned version of Vignesh-M/Indic-whisper on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5056
- Accuracy: 0.8868
- Macro Precision: 0.8642
- Macro Recall: 0.8509
- Macro F1-score: 0.8572
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro Precision | Macro Recall | Macro F1-score |
---|---|---|---|---|---|---|---|
0.4635 | 0.4367 | 50 | 0.4010 | 0.8020 | 0.8176 | 0.8096 | 0.8014 |
0.3403 | 0.8734 | 100 | 0.3162 | 0.8684 | 0.8685 | 0.8668 | 0.8675 |
0.2689 | 1.3100 | 150 | 0.3025 | 0.8807 | 0.8838 | 0.8774 | 0.8793 |
0.2339 | 1.7467 | 200 | 0.3019 | 0.8782 | 0.8776 | 0.8777 | 0.8776 |
0.1723 | 2.1834 | 250 | 0.3715 | 0.8868 | 0.8870 | 0.8854 | 0.8861 |
0.1027 | 2.6201 | 300 | 0.3472 | 0.8930 | 0.8937 | 0.8912 | 0.8921 |
0.123 | 3.0568 | 350 | 0.3690 | 0.8795 | 0.8855 | 0.8751 | 0.8776 |
0.0497 | 3.4934 | 400 | 0.4423 | 0.8918 | 0.8916 | 0.8907 | 0.8911 |
0.0534 | 3.9301 | 450 | 0.3937 | 0.9041 | 0.9048 | 0.9024 | 0.9033 |
0.0235 | 4.3668 | 500 | 0.4753 | 0.8979 | 0.8993 | 0.8958 | 0.8970 |
0.0196 | 4.8035 | 550 | 0.5204 | 0.8967 | 0.8982 | 0.8944 | 0.8957 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1
- Downloads last month
- 114
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for callmesan/whisper-indic-audio-abuse-feature
Base model
Vignesh-M/Indic-whisper