|
--- |
|
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
library_name: setfit |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: Pasivo ahorro y retiro job mejor atención y disponibilidad |
|
- text: Detractor ahorro y retiro ahorro y retiro premium La atenció telefónica no |
|
es buena solo habla una maquina y nunca responde una persona para que le ayude |
|
a uno y poder expresar lo que se necesita. |
|
- text: Detractor gestión patrimonial alto perfil Difícil hacer una gestión por la |
|
página. No he podido retirar un saldo porque no llevo carta y no me dicen qué |
|
hacer si esa empresa ya no existe |
|
- text: Detractor ahorro y retiro dynamic top POrque tengo una inversion y hace tiempo |
|
que no se contacta mi asesor conmigo, le escribí un correo hace unos días y no |
|
me contestó, cambie de celular y no he podido actiualizarlo, estoy buscando como |
|
sacar mi dinero de alla, por la mala experiencia. |
|
- text: Detractor ahorro y retiro pensionado Empecé el proceso en****, y terminé consiguiéndolo |
|
en el****, me dejé en el camino más de 250€ en llamadas desde España a Colombia, |
|
y cada mes me toca pagar para traer el dinero de mi pensión hasta España porque |
|
no hay convenios con los bancos, pierdes en el año más o menos el 80% de una mesada. |
|
inference: true |
|
model-index: |
|
- name: SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.8823529411764706 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 128 tokens |
|
- **Number of Classes:** 4 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:----------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| Construcción de mi pensión personas | <ul><li>'Promotor ahorro y retiro job Excelente servicio'</li><li>'Promotor ahorro y retiro pensionado Asesoría sobre las modalidades de pensión'</li><li>'Pasivo ahorro y retiro hni job Mejorar la asesoría personalizada según el nivel de ingresos de la persona'</li></ul> | |
|
| Solución de ahorro e inversión personas | <ul><li>'Detractor ahorro y retiro job No estoy muy relacionada con el tema'</li><li>'Detractor gestión patrimonial alto perfil Mal servicio por desconocimiento, decisiones unilaterales de Proteccion que afectan a los usuarios, falta de trasparencia en negociones de bonos, falta de soportes aritmeticos y financieros en sus datos a clientes, etc, ect.'</li><li>'Pasivo ahorro y retiro job Asesor pendiente del ahorro sea mucho o poco para tener más rendimientos.'</li></ul> | |
|
| Cesantías Personas | <ul><li>'Detractor gestión patrimonial alto perfil No me volvieron a enviar información de mi estado de cuenta de las cesantías'</li></ul> | |
|
| Construcción de mi pensión empresas | <ul><li>'Detractor ahorro y retiro ahorro y retiro basic No contamos con acompañamiento.'</li><li>'Promotor grandes empleadores grandes empleadores el reconocimiento y trayectoria'</li><li>'Pasivo ahorro y retiro ahorro y retiro basic Mejor asesoramiento'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 0.8824 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("camaosos/journey") |
|
# Run inference |
|
preds = model("Pasivo ahorro y retiro job mejor atención y disponibilidad") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 5 | 18.7576 | 169 | |
|
|
|
| Label | Training Sample Count | |
|
|:----------------------------------------|:----------------------| |
|
| Cesantías Personas | 1 | |
|
| Construcción de mi pensión empresas | 8 | |
|
| Construcción de mi pensión personas | 31 | |
|
| Solución de ahorro e inversión personas | 26 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (16, 16) |
|
- num_epochs: (4, 4) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: True |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:-------:|:-------------:|:---------------:| |
|
| 0.0060 | 1 | 0.1959 | - | |
|
| 0.3012 | 50 | 0.196 | - | |
|
| 0.6024 | 100 | 0.0082 | - | |
|
| 0.9036 | 150 | 0.0016 | - | |
|
| 1.0 | 166 | - | 0.1009 | |
|
| 1.2048 | 200 | 0.0012 | - | |
|
| 1.5060 | 250 | 0.0012 | - | |
|
| 1.8072 | 300 | 0.0004 | - | |
|
| **2.0** | **332** | **-** | **0.095** | |
|
| 2.1084 | 350 | 0.0005 | - | |
|
| 2.4096 | 400 | 0.0004 | - | |
|
| 2.7108 | 450 | 0.0005 | - | |
|
| 3.0 | 498 | - | 0.1009 | |
|
| 3.0120 | 500 | 0.0005 | - | |
|
| 3.3133 | 550 | 0.0003 | - | |
|
| 3.6145 | 600 | 0.0003 | - | |
|
| 3.9157 | 650 | 0.0011 | - | |
|
| 4.0 | 664 | - | 0.1002 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
### Framework Versions |
|
- Python: 3.10.10 |
|
- SetFit: 1.0.3 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.42.3 |
|
- PyTorch: 2.2.1+cu121 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |