File size: 1,980 Bytes
d401af6 897a616 bdd868c d401af6 bdd868c d401af6 bdd868c 897a616 bdd868c d401af6 bdd868c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
---
license: mit
datasets:
- cardiffnlp/super_tweeteval
language:
- en
pipeline_tag: text-classification
---
# cardiffnlp/twitter-roberta-base-emotion-latest
This is a RoBERTa-base model trained on 154M tweets until the end of December 2022 and finetuned for emotion classification (multilabel classification) on the _TweetEmotion_ dataset of [SuperTweetEval](https://huggingface.co/datasets/cardiffnlp/super_tweeteval).
The original Twitter-based RoBERTa model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-base-2022-154m).
## Labels
<code>
"id2label": {
"0": "anger",
"1": "anticipation",
"2": "disgust",
"3": "fear",
"4": "joy",
"5": "love",
"6": "optimism",
"7": "pessimism",
"8": "sadness",
"9": "surprise",
"10": "trust"
}
</code>
## Example
```python
from transformers import pipeline
text= "@user it also helps that the majority of NFL coaching is inept. Some of Bill O'Brien's play calling was wow, ! #GOPATS"
pipe = pipeline('text-classification', model="cardiffnlp/twitter-roberta-base-emotion-latest", return_all_scores=True)
predictions = pipe(text)[0]
predictions = [x for x in predictions if x['score'] > 0.5]
predictions
>> [{'label': 'anger', 'score': 0.8713036775588989},
{'label': 'disgust', 'score': 0.7899409532546997},
{'label': 'joy', 'score': 0.9664386510848999},
{'label': 'optimism', 'score': 0.6123248934745789}]
```
## Citation Information
Please cite the [reference paper](https://arxiv.org/abs/2310.14757) if you use this model.
```bibtex
@inproceedings{antypas2023supertweeteval,
title={SuperTweetEval: A Challenging, Unified and Heterogeneous Benchmark for Social Media NLP Research},
author={Dimosthenis Antypas and Asahi Ushio and Francesco Barbieri and Leonardo Neves and Kiamehr Rezaee and Luis Espinosa-Anke and Jiaxin Pei and Jose Camacho-Collados},
booktitle={Findings of the Association for Computational Linguistics: EMNLP 2023},
year={2023}
}
``` |