antypasd's picture
Upload RobertaForSequenceClassification
1651a13 verified
---
language:
- en
license: mit
datasets:
- cardiffnlp/super_tweeteval
pipeline_tag: text-classification
---
# cardiffnlp/twitter-roberta-large-emotion-latest
This is a RoBERTa-large model trained on 154M tweets until the end of December 2022 and finetuned for emotion classification (multilabel classification) on the _TweetEmotion_ dataset of [SuperTweetEval](https://huggingface.co/datasets/cardiffnlp/super_tweeteval).
The original Twitter-based RoBERTa model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-large-2022-154m).
## Labels
<code>
"id2label": {
"0": "anger",
"1": "anticipation",
"2": "disgust",
"3": "fear",
"4": "joy",
"5": "love",
"6": "optimism",
"7": "pessimism",
"8": "sadness",
"9": "surprise",
"10": "trust"
}
</code>
## Example
```python
from transformers import pipeline
text= "@user it also helps that the majority of NFL coaching is inept. Some of Bill O'Brien's play calling was wow, ! #GOPATS"
pipe = pipeline('text-classification', model="cardiffnlp/twitter-roberta-large-emotion-latest", return_all_scores=True)
predictions = pipe(text)[0]
predictions = [x for x in predictions if x['score'] > 0.5]
predictions
>> [{'label': 'anger', 'score': 0.927680253982544},
{'label': 'disgust', 'score': 0.895420491695404},
{'label': 'joy', 'score': 0.9239692687988281},
{'label': 'optimism', 'score': 0.6795405745506287}]
```
## Citation Information
Please cite the [reference paper](https://arxiv.org/abs/2310.14757) if you use this model.
```bibtex
@inproceedings{antypas2023supertweeteval,
title={SuperTweetEval: A Challenging, Unified and Heterogeneous Benchmark for Social Media NLP Research},
author={Dimosthenis Antypas and Asahi Ushio and Francesco Barbieri and Leonardo Neves and Kiamehr Rezaee and Luis Espinosa-Anke and Jiaxin Pei and Jose Camacho-Collados},
booktitle={Findings of the Association for Computational Linguistics: EMNLP 2023},
year={2023}
}
```