|
--- |
|
library_name: peft |
|
license: mit |
|
datasets: |
|
- iva_mt_wslot |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: iva_mt_wslot-m2m100_418M-en-pl-lora_adapter |
|
results: |
|
- task: |
|
name: Machine Translation |
|
type: text2text-generation |
|
dataset: |
|
name: iva_mt_wslot |
|
type: iva_mt_wslot |
|
config: en-pl |
|
split: validation |
|
args: en-pl |
|
metrics: |
|
- name: Bleu |
|
type: bleu |
|
value: 38.2365 |
|
language: |
|
- pl |
|
tags: |
|
- machine translation |
|
- iva |
|
- virtual assistants |
|
- natural language understanding |
|
- nlu |
|
--- |
|
|
|
# (WIP!) iva_mt_wslot-m2m100_418M-en-pl-lora_adapter |
|
|
|
Notice: **Although training results are good for some reason inference results are rather poor. I'm leaving this model here as a PoC that PERF LORA adaptation for M2M100 is possible.** |
|
|
|
This model is a LORA adapted version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on the iva_mt_wslot dataset. |
|
It achieves the following results on the test set (measured with sacrebleu): |
|
- Bleu: 9.33 |
|
|
|
## Using |
|
|
|
The model can be used as follows: |
|
|
|
First, clone the repository and navigate to the project directory: |
|
|
|
```bash |
|
git clone https://github.com/cartesinus/multiverb_iva_mt |
|
cd multiverb_iva_mt |
|
``` |
|
|
|
Then: |
|
|
|
```python |
|
import csv |
|
from iva_mt.iva_mt import IVAMT |
|
import pandas as pd |
|
|
|
lang = "es" |
|
translator = IVAMT(lang, peft_model_id="cartesinus/iva_mt_wslot-m2m100_418M-en-es-lora_adapter", device="cuda:0", batch_size=128) |
|
trans = translator.translate("here your example")[0] |
|
``` |
|
|
|
## Training results |
|
|
|
| Epoch | Training Loss | Validation Loss | Bleu | Gen Len | |
|
|:-----:|:-------------:|:---------------:|:-------:|:-------:| |
|
| 1 | 7.8621 | 7.6870 | 24.9063 | 19.3322 | |
|
| 2 | 7.6340 | 7.5312 | 29.7956 | 19.7533 | |
|
| 3 | 7.5582 | 7.4595 | 34.8184 | 20.1269 | |
|
| 4 | 7.5047 | 7.4264 | 36.1874 | 20.5621 | |
|
| 5 | 7.4888 | 7.4167 | 36.2287 | 20.4417 | |
|
| 6 | 7.4560 | 7.4013 | 36.6355 | 20.2241 | |
|
| 7 | 7.4477 | 7.3907 | 37.0554 | 20.0945 | |
|
| 8 | 7.4422 | 7.3743 | 37.7549 | 20.1589 | |
|
| 9 | 7.4311 | 7.3748 | 37.5705 | 19.9370 | |
|
| 10 | 7.4294 | 7.3679 | 37.5343 | 20.2241 | |
|
| 11 | 7.4114 | 7.3697 | 38.1872 | 20.3836 | |
|
| 12 | 7.4224 | 7.3620 | 38.1759 | 20.1785 | |
|
| 13 | 7.4334 | 7.3608 | 38.0895 | 20.2996 | |
|
| 14 | 7.4133 | 7.3621 | 38.2365 | 20.2948 | |
|
| 15 | 7.4158 | 7.3599 | 38.1056 | 20.2010 | |
|
|
|
|
|
## Framework versions |
|
|
|
- PEFT 0.5.0 |