cartesinus's picture
Update README.md
5de0f3c
|
raw
history blame
2.09 kB
metadata
license: mit
tags:
  - generated_from_trainer
  - nlu
  - domain-classificatoin
metrics:
  - accuracy
  - f1
model-index:
  - name: xlm-r-base-amazon-massive-domain
    results:
      - task:
          name: text-classification
          type: text-classification
        dataset:
          name: MASSIVE
          type: AmazonScience/massive
          split: test
        metrics:
          - name: F1
            type: f1
            value: 0.9213
datasets:
  - AmazonScience/massive
language:
  - en

xlm-r-base-amazon-massive-domain

This model is a fine-tuned version of xlm-roberta-base on the Amazon Massive dataset (only en-US subset). It achieves the following results on the evaluation set:

  • Loss: 0.3788
  • Accuracy: 0.9213
  • F1: 0.9213

Model description

Domain classifier trained from Amazon Massive dataset.

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.382 1.0 720 0.4533 0.8795 0.8795
0.4598 2.0 1440 0.3448 0.9026 0.9026
0.2547 3.0 2160 0.3762 0.9065 0.9065
0.1986 4.0 2880 0.3748 0.9139 0.9139
0.1358 5.0 3600 0.3788 0.9213 0.9213

Framework versions

  • Transformers 4.22.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.5.1
  • Tokenizers 0.12.1