token_classification_test

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2859
  • Precision: 0.9187
  • Recall: 0.9095
  • F1: 0.9140
  • Accuracy: 0.9308

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 47 1.2700 0.6758 0.5896 0.6298 0.7121
No log 2.0 94 0.6468 0.8315 0.7864 0.8083 0.8461
No log 3.0 141 0.4607 0.8709 0.8422 0.8563 0.8845
No log 4.0 188 0.3841 0.8924 0.8686 0.8804 0.9047
No log 5.0 235 0.3380 0.9060 0.8905 0.8982 0.9180
No log 6.0 282 0.3164 0.9096 0.8934 0.9014 0.9213
No log 7.0 329 0.3072 0.9090 0.9001 0.9045 0.9227
No log 8.0 376 0.2997 0.9156 0.9009 0.9082 0.9258
No log 9.0 423 0.2940 0.9141 0.9058 0.9099 0.9269
No log 10.0 470 0.2904 0.9199 0.9076 0.9137 0.9312
0.5334 11.0 517 0.2894 0.9210 0.9093 0.9151 0.9314
0.5334 12.0 564 0.2884 0.9173 0.9081 0.9127 0.9295
0.5334 13.0 611 0.2862 0.9184 0.9089 0.9136 0.9305
0.5334 14.0 658 0.2859 0.9196 0.9103 0.9149 0.9310
0.5334 15.0 705 0.2859 0.9187 0.9095 0.9140 0.9308

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.3
  • Tokenizers 0.13.3
Downloads last month
21
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for casonshep/token_classification_test

Finetuned
(7086)
this model