|
--- |
|
language: |
|
- zh |
|
tags: |
|
- Seq2SeqLM |
|
- 古文 |
|
- 文言文 |
|
- 中国古代官职翻译 |
|
- ancient |
|
- classical |
|
license: cc-by-nc-sa-4.0 |
|
metrics: |
|
- sacrebleu |
|
--- |
|
|
|
# <font color="IndianRed"> TITO (Classical Chinese Office Title Translation)</font> |
|
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1UoG3QebyBlK6diiYckiQv-5dRB9dA4iv?usp=sharing/) |
|
|
|
Our model <font color="cornflowerblue">TITO (Classical Chinese Office Title Translation) </font> is a Sequence to Sequence Classical Chinese language model that is intended to <font color="IndianRed">translate a Classical Chinese office title into English</font>. This model is first inherited from the MarianMTModel, and finetuned using a 6,208 high-quality translation pairs collected CBDB group (China Biographical Database). |
|
|
|
### <font color="IndianRed"> How to use </font> |
|
|
|
Here is how to use this model to get the features of a given text in PyTorch: |
|
|
|
<font color="cornflowerblue"> 1. Import model and packages </font> |
|
```python |
|
from transformers import MarianMTModel, MarianTokenizer |
|
|
|
device = torch.device('cuda') |
|
model_name = 'cbdb/ClassicalChineseOfficeTitleTranslation' |
|
tokenizer = MarianTokenizer.from_pretrained(model_name) |
|
model = MarianMTModel.from_pretrained(model_name).to(device) |
|
``` |
|
|
|
<font color="cornflowerblue"> 2. Load Data </font> |
|
```python |
|
# Load your data here |
|
tobe_translated = ['講筵官','判司簿尉','散騎常侍','殿中省尚輦奉御'] |
|
``` |
|
|
|
<font color="cornflowerblue"> 3. Make a prediction </font> |
|
```python |
|
inputs = tokenizer(tobe_translated, return_tensors="pt", padding=True).to(device) |
|
translated = model.generate(**inputs, max_length=128) |
|
tran = [tokenizer.decode(t, skip_special_tokens=True) for t in translated] |
|
for c, t in zip(tobe_translated, tran): |
|
print(f'{c}: {t}') |
|
``` |
|
講筵官: Lecturer<br> |
|
判司簿尉: Supervisor of the Commandant of Records<br> |
|
散騎常侍: Policy Advisor<br> |
|
殿中省尚輦奉御: Chief Steward of the Palace Administration<br> |
|
|
|
### <font color="IndianRed">Authors </font> |
|
Queenie Luo (queenieluo[at]g.harvard.edu) |
|
<br> |
|
Hongsu Wang |
|
<br> |
|
Peter Bol |
|
<br> |
|
CBDB Group |
|
|
|
### <font color="IndianRed">License </font> |
|
Copyright (c) 2023 CBDB |
|
|
|
Except where otherwise noted, content on this repository is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0). |
|
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/ or |
|
send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. |