ccdv's picture
small fix
137cdc2
---
tags:
- albert
- long context
language:
- en
pipeline_tag: fill-mask
---
# LSG model
**Transformers >= 4.36.1**\
**This model relies on a custom modeling file, you need to add trust_remote_code=True**\
**See [\#13467](https://github.com/huggingface/transformers/pull/13467)**
LSG ArXiv [paper](https://arxiv.org/abs/2210.15497). \
Github/conversion script is available at this [link](https://github.com/ccdv-ai/convert_checkpoint_to_lsg).
* [Usage](#usage)
* [Parameters](#parameters)
* [Sparse selection type](#sparse-selection-type)
* [Tasks](#tasks)
This model is adapted from [AlBERT-base-v2](https://huggingface.co/albert-base-v2) without additional pretraining. It uses the same number of parameters/layers and the same tokenizer.
This model can handle long sequences but faster and more efficiently than Longformer (LED) or BigBird (Pegasus) from the hub and relies on Local + Sparse + Global attention (LSG).
The model requires sequences whose length is a multiple of the block size. The model is "adaptive" and automatically pads the sequences if needed (adaptive=True in config). It is however recommended, thanks to the tokenizer, to truncate the inputs (truncation=True) and optionally to pad with a multiple of the block size (pad_to_multiple_of=...).
Implemented in PyTorch.
![attn](attn.png)
## Usage
The model relies on a custom modeling file, you need to add trust_remote_code=True to use it.
```python:
from transformers import AutoModel, AutoTokenizer
model = AutoModel.from_pretrained("ccdv/lsg-albert-base-v2-4096", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-albert-base-v2-4096")
```
## Parameters
You can change various parameters like :
* the number of global tokens (num_global_tokens=1)
* local block size (block_size=128)
* sparse block size (sparse_block_size=128)
* sparsity factor (sparsity_factor=2)
* mask_first_token (mask first token since it is redundant with the first global token)
* see config.json file
Default parameters work well in practice. If you are short on memory, reduce block sizes, increase sparsity factor and remove dropout in the attention score matrix.
```python:
from transformers import AutoModel
model = AutoModel.from_pretrained("ccdv/lsg-albert-base-v2-4096",
trust_remote_code=True,
num_global_tokens=16,
block_size=64,
sparse_block_size=64,
attention_probs_dropout_prob=0.0
sparsity_factor=4,
sparsity_type="none",
mask_first_token=True
)
```
## Sparse selection type
There are 6 different sparse selection patterns. The best type is task dependent. \
If `sparse_block_size=0` or `sparsity_type="none"`, only local attention is considered. \
Note that for sequences with length < 2*block_size, the type has no effect.
* `sparsity_type="bos_pooling"` (new)
* weighted average pooling using the BOS token
* Works best in general, especially with a rather large sparsity_factor (8, 16, 32)
* Additional parameters:
* None
* `sparsity_type="norm"`, select highest norm tokens
* Works best for a small sparsity_factor (2 to 4)
* Additional parameters:
* None
* `sparsity_type="pooling"`, use average pooling to merge tokens
* Works best for a small sparsity_factor (2 to 4)
* Additional parameters:
* None
* `sparsity_type="lsh"`, use the LSH algorithm to cluster similar tokens
* Works best for a large sparsity_factor (4+)
* LSH relies on random projections, thus inference may differ slightly with different seeds
* Additional parameters:
* lsg_num_pre_rounds=1, pre merge tokens n times before computing centroids
* `sparsity_type="stride"`, use a striding mecanism per head
* Each head will use different tokens strided by sparsify_factor
* Not recommended if sparsify_factor > num_heads
* `sparsity_type="block_stride"`, use a striding mecanism per head
* Each head will use block of tokens strided by sparsify_factor
* Not recommended if sparsify_factor > num_heads
## Tasks
Seq2Seq example for summarization:
```python:
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
model = AutoModelForSeq2SeqLM.from_pretrained("ccdv/lsg-albert-base-v2-4096",
trust_remote_code=True,
pass_global_tokens_to_decoder=True, # Pass encoder global tokens to decoder
)
tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-albert-base-v2-4096")
SENTENCE = "This is a test sequence to test the model. " * 300
token_ids = tokenizer(
SENTENCE,
return_tensors="pt",
padding="max_length", # Optional but recommended
truncation=True # Optional but recommended
)
output = model(**token_ids)
```
Classification example:
```python:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("ccdv/lsg-albert-base-v2-4096",
trust_remote_code=True,
pass_global_tokens_to_decoder=True, # Pass encoder global tokens to decoder
)
tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-albert-base-v2-4096")
SENTENCE = "This is a test sequence to test the model. " * 300
token_ids = tokenizer(
SENTENCE,
return_tensors="pt",
#pad_to_multiple_of=... # Optional
truncation=True
)
output = model(**token_ids)
> SequenceClassifierOutput(loss=None, logits=tensor([[-0.3051, -0.1762]], grad_fn=<AddmmBackward>), hidden_states=None, attentions=None)
```
**AlBERT**
```
@article{DBLP:journals/corr/abs-1909-11942,
author = {Zhenzhong Lan and
Mingda Chen and
Sebastian Goodman and
Kevin Gimpel and
Piyush Sharma and
Radu Soricut},
title = {{ALBERT:} {A} Lite {BERT} for Self-supervised Learning of Language
Representations},
journal = {CoRR},
volume = {abs/1909.11942},
year = {2019},
url = {http://arxiv.org/abs/1909.11942},
archivePrefix = {arXiv},
eprint = {1909.11942},
timestamp = {Fri, 27 Sep 2019 13:04:21 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1909-11942.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```