For more details please refer to our github repo: https://github.com/FlagOpen/FlagEmbedding
LLARA (paper)
In this project, we introduce LLaRA:
- EBAE: Embedding-Based Auto-Encoding.
- EBAR: Embedding-Based Auto-Regression.
Usage
import torch
from transformers import AutoModel, AutoTokenizer, LlamaModel
def get_query_inputs(queries, tokenizer, max_length=512):
prefix = '"'
suffix = '", predict the following passage within eight words: <s9><s10><s11><s12><s13><s14><s15><s16>'
prefix_ids = tokenizer(prefix, return_tensors=None)['input_ids']
suffix_ids = tokenizer(suffix, return_tensors=None)['input_ids'][1:]
queries_inputs = []
for query in queries:
inputs = tokenizer(query,
return_tensors=None,
max_length=max_length,
truncation=True,
add_special_tokens=False)
inputs['input_ids'] = prefix_ids + inputs['input_ids'] + suffix_ids
inputs['attention_mask'] = [1] * len(inputs['input_ids'])
queries_inputs.append(inputs)
return tokenizer.pad(
queries_inputs,
padding=True,
max_length=max_length,
pad_to_multiple_of=8,
return_tensors='pt',
)
def get_passage_inputs(passages, tokenizer, max_length=512):
prefix = '"'
suffix = '", summarize the above passage within eight words: <s1><s2><s3><s4><s5><s6><s7><s8>'
prefix_ids = tokenizer(prefix, return_tensors=None)['input_ids']
suffix_ids = tokenizer(suffix, return_tensors=None)['input_ids'][1:]
passages_inputs = []
for passage in passages:
inputs = tokenizer(passage,
return_tensors=None,
max_length=max_length,
truncation=True,
add_special_tokens=False)
inputs['input_ids'] = prefix_ids + inputs['input_ids'] + suffix_ids
inputs['attention_mask'] = [1] * len(inputs['input_ids'])
passages_inputs.append(inputs)
return tokenizer.pad(
passages_inputs,
padding=True,
max_length=max_length,
pad_to_multiple_of=8,
return_tensors='pt',
)
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained('BAAI/LLARA-beir')
model = AutoModel.from_pretrained('BAAI/LLARA-beir')
# Define query and passage inputs
query = "What is llama?"
title = "Llama"
passage = "The llama is a domesticated South American camelid, widely used as a meat and pack animal by Andean cultures since the pre-Columbian era."
query_input = get_query_inputs([query], tokenizer)
passage_input = get_passage_inputs([passage], tokenizer)
with torch.no_grad():
# compute query embedding
query_outputs = model(**query_input, return_dict=True, output_hidden_states=True)
query_embedding = query_outputs.hidden_states[-1][:, -8:, :]
query_embedding = torch.mean(query_embedding, dim=1)
query_embedding = torch.nn.functional.normalize(query_embedding, dim=-1)
# compute passage embedding
passage_outputs = model(**passage_input, return_dict=True, output_hidden_states=True)
passage_embeddings = passage_outputs.hidden_states[-1][:, -8:, :]
passage_embeddings = torch.mean(passage_embeddings, dim=1)
passage_embeddings = torch.nn.functional.normalize(passage_embeddings, dim=-1)
# compute similarity score
score = query_embedding @ passage_embeddings.T
print(score)
Acknowledgement
Thanks to the authors of open-sourced datasets, including MSMARCO, BEIR, etc. Thanks to the open-sourced libraries like Pyserini.
Citation
If you find this repository useful, please consider giving a star :star: and citation
@misc{li2023making,
title={Making Large Language Models A Better Foundation For Dense Retrieval},
author={Chaofan Li and Zheng Liu and Shitao Xiao and Yingxia Shao},
year={2023},
eprint={2312.15503},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.