workflow_test_api / api_example.py
cgauss's picture
Upload 2 files
b51a719 verified
raw
history blame
6.49 kB
import argparse
import json
import random
import time
import requests
import base64
from io import BytesIO
def get_image_as_base64(url):
try:
response = requests.get(url)
response.raise_for_status()
image_data = BytesIO(response.content)
base64_image = base64.b64encode(image_data.getvalue()).decode('utf-8')
return base64_image
except requests.exceptions.RequestException as ex:
print(f'Failed to retrieve image: {ex}')
return None
def queue_prompt(url, prompt):
p = {"prompt": prompt}
data = json.dumps(p).encode('utf-8')
prompt_url = f"{url}/prompt"
try:
r = requests.post(prompt_url, data=data)
r.raise_for_status()
return r.json()
except requests.exceptions.RequestException as ex:
print(f'POST {prompt_url} failed: {ex}')
return None
def get_queue(url):
queue_url = f"{url}/queue"
try:
r = requests.get(queue_url)
r.raise_for_status()
return r.json()
except requests.exceptions.RequestException as ex:
print(f'GET {queue_url} failed: {ex}')
return None
def get_history(url, prompt_id):
history_url = f"{url}/history/{prompt_id}"
try:
r = requests.get(history_url)
r.raise_for_status()
return r.json()
except requests.exceptions.RequestException as ex:
print(f'GET {history_url} failed: {ex}')
return None
def main(ip, port, filepath, prompt=None, steps=None, seed=None, cfg=None, width=None, height=None, lora_name=None, lora_scale=None):
url = f"http://{ip}:{port}"
with open(filepath, 'r') as file:
prompt_text = json.load(file)
# Update prompt_text with provided arguments
if prompt is not None:
prompt_text["6"]["inputs"]["text"] = prompt
if steps is not None:
prompt_text["17"]["inputs"]["steps"] = steps
if seed is not None:
prompt_text["25"]["inputs"]["noise_seed"] = seed
else:
prompt_text["25"]["inputs"]["noise_seed"] = random.randint(0, 1000000000000000)
if cfg is not None:
prompt_text["26"]["inputs"]["guidance"] = cfg
if width is not None:
prompt_text["27"]["inputs"]["width"] = width
if height is not None:
prompt_text["27"]["inputs"]["height"] = height
if lora_name is not None:
prompt_text["30"]["inputs"]["lora_name"] = lora_name
if lora_scale is not None:
prompt_text["30"]["inputs"]["strength_model"] = lora_scale
# Print the updated values
print(f'Prompt: {prompt_text["6"]["inputs"]["text"]}')
print(f'Steps: {prompt_text["17"]["inputs"]["steps"]}')
print(f'Seed: {prompt_text["25"]["inputs"]["noise_seed"]}')
print(f'CFG: {prompt_text["26"]["inputs"]["guidance"]}')
print(f'Width: {prompt_text["27"]["inputs"]["width"]}')
print(f'Height: {prompt_text["27"]["inputs"]["height"]}')
print(f'LoRA Name: {prompt_text["30"]["inputs"]["lora_name"]}')
print(f'LoRA Scale: {prompt_text["30"]["inputs"]["strength_model"]}')
response1 = queue_prompt(url, prompt_text)
if response1 is None:
print("Failed to queue the prompt.")
return
prompt_id = response1['prompt_id']
print(f'Prompt ID: {prompt_id}')
print('-' * 20)
while True:
time.sleep(5)
queue_response = get_queue(url)
if queue_response is None:
continue
queue_pending = queue_response.get('queue_pending', [])
queue_running = queue_response.get('queue_running', [])
# Check position in queue
for position, item in enumerate(queue_pending):
if item[1] == prompt_id:
print(f'Queue running: {len(queue_running)}, Queue pending: {len(queue_pending)}, Workflow is in position {position + 1} in the queue.')
# Check if the prompt is currently running
for item in queue_running:
if item[1] == prompt_id:
print(f'Queue running: {len(queue_running)}, Queue pending: {len(queue_pending)}, Workflow is currently running.')
break
if not any(prompt_id in item for item in queue_pending + queue_running):
break
history_response = get_history(url, prompt_id)
if history_response is None:
print("Failed to retrieve history.")
return
output_info = history_response.get(prompt_id, {}).get('outputs', {}).get('9', {}).get('images', [{}])[0]
filename = output_info.get('filename', 'unknown.png')
output_url = f"{url}/output/{filename}"
print(f"Output URL: {output_url}")
# Get base64 encoded image
base64_image = get_image_as_base64(output_url)
if base64_image:
print("Base64 encoded image:")
print(base64_image)
else:
print("Failed to retrieve base64 encoded image.")
return {
"output_url": output_url,
"base64_image": base64_image
}
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Add a prompt to the queue and wait for the output.')
parser.add_argument('--ip', type=str, required=True, help='The public IP address of the pod')
parser.add_argument('--port', type=int, required=True, help='The external port of the pod')
parser.add_argument('--filepath', type=str, required=True, help='The path to the JSON file containing the workflow in api format')
parser.add_argument('--prompt', type=str, help='The prompt to use for the workflow')
parser.add_argument('--steps', type=int, help='Number of steps for the sampler')
parser.add_argument('--seed', type=int, help='Seed for the noise generator')
parser.add_argument('--cfg', type=float, help='Classifier-free guidance scale')
parser.add_argument('--width', type=int, help='Width of the output image')
parser.add_argument('--height', type=int, help='Height of the output image')
parser.add_argument('--lora_name', type=str, help='Name of the LoRA to use')
parser.add_argument('--lora_scale', type=float, help='Scale of the LoRA effect')
args = parser.parse_args()
result = main(args.ip, args.port, args.filepath, args.prompt, args.steps, args.seed, args.cfg, args.width, args.height, args.lora_name, args.lora_scale)
# If you want to save the base64 image to a file
if result and result["base64_image"]:
with open("output_image.txt", "w") as f:
f.write(result["base64_image"])
print("Base64 image saved to output_image.txt")