|
import argparse |
|
import json |
|
import random |
|
import time |
|
import requests |
|
import base64 |
|
from io import BytesIO |
|
|
|
def get_image_as_base64(url): |
|
try: |
|
response = requests.get(url) |
|
response.raise_for_status() |
|
image_data = BytesIO(response.content) |
|
base64_image = base64.b64encode(image_data.getvalue()).decode('utf-8') |
|
return base64_image |
|
except requests.exceptions.RequestException as ex: |
|
print(f'Failed to retrieve image: {ex}') |
|
return None |
|
|
|
def queue_prompt(url, prompt): |
|
p = {"prompt": prompt} |
|
data = json.dumps(p).encode('utf-8') |
|
prompt_url = f"{url}/prompt" |
|
try: |
|
r = requests.post(prompt_url, data=data) |
|
r.raise_for_status() |
|
return r.json() |
|
except requests.exceptions.RequestException as ex: |
|
print(f'POST {prompt_url} failed: {ex}') |
|
return None |
|
|
|
def get_queue(url): |
|
queue_url = f"{url}/queue" |
|
try: |
|
r = requests.get(queue_url) |
|
r.raise_for_status() |
|
return r.json() |
|
except requests.exceptions.RequestException as ex: |
|
print(f'GET {queue_url} failed: {ex}') |
|
return None |
|
|
|
|
|
def get_history(url, prompt_id): |
|
history_url = f"{url}/history/{prompt_id}" |
|
try: |
|
r = requests.get(history_url) |
|
r.raise_for_status() |
|
return r.json() |
|
except requests.exceptions.RequestException as ex: |
|
print(f'GET {history_url} failed: {ex}') |
|
return None |
|
|
|
|
|
def main(ip, port, filepath, prompt=None, steps=None, seed=None, cfg=None, width=None, height=None, lora_name=None, lora_scale=None): |
|
url = f"http://{ip}:{port}" |
|
|
|
with open(filepath, 'r') as file: |
|
prompt_text = json.load(file) |
|
|
|
|
|
if prompt is not None: |
|
prompt_text["6"]["inputs"]["text"] = prompt |
|
if steps is not None: |
|
prompt_text["17"]["inputs"]["steps"] = steps |
|
if seed is not None: |
|
prompt_text["25"]["inputs"]["noise_seed"] = seed |
|
else: |
|
prompt_text["25"]["inputs"]["noise_seed"] = random.randint(0, 1000000000000000) |
|
if cfg is not None: |
|
prompt_text["26"]["inputs"]["guidance"] = cfg |
|
if width is not None: |
|
prompt_text["27"]["inputs"]["width"] = width |
|
if height is not None: |
|
prompt_text["27"]["inputs"]["height"] = height |
|
if lora_name is not None: |
|
prompt_text["30"]["inputs"]["lora_name"] = lora_name |
|
if lora_scale is not None: |
|
prompt_text["30"]["inputs"]["strength_model"] = lora_scale |
|
|
|
|
|
print(f'Prompt: {prompt_text["6"]["inputs"]["text"]}') |
|
print(f'Steps: {prompt_text["17"]["inputs"]["steps"]}') |
|
print(f'Seed: {prompt_text["25"]["inputs"]["noise_seed"]}') |
|
print(f'CFG: {prompt_text["26"]["inputs"]["guidance"]}') |
|
print(f'Width: {prompt_text["27"]["inputs"]["width"]}') |
|
print(f'Height: {prompt_text["27"]["inputs"]["height"]}') |
|
print(f'LoRA Name: {prompt_text["30"]["inputs"]["lora_name"]}') |
|
print(f'LoRA Scale: {prompt_text["30"]["inputs"]["strength_model"]}') |
|
|
|
response1 = queue_prompt(url, prompt_text) |
|
if response1 is None: |
|
print("Failed to queue the prompt.") |
|
return |
|
|
|
prompt_id = response1['prompt_id'] |
|
print(f'Prompt ID: {prompt_id}') |
|
print('-' * 20) |
|
|
|
while True: |
|
time.sleep(5) |
|
queue_response = get_queue(url) |
|
if queue_response is None: |
|
continue |
|
|
|
queue_pending = queue_response.get('queue_pending', []) |
|
queue_running = queue_response.get('queue_running', []) |
|
|
|
|
|
for position, item in enumerate(queue_pending): |
|
if item[1] == prompt_id: |
|
print(f'Queue running: {len(queue_running)}, Queue pending: {len(queue_pending)}, Workflow is in position {position + 1} in the queue.') |
|
|
|
|
|
for item in queue_running: |
|
if item[1] == prompt_id: |
|
print(f'Queue running: {len(queue_running)}, Queue pending: {len(queue_pending)}, Workflow is currently running.') |
|
break |
|
|
|
if not any(prompt_id in item for item in queue_pending + queue_running): |
|
break |
|
|
|
history_response = get_history(url, prompt_id) |
|
if history_response is None: |
|
print("Failed to retrieve history.") |
|
return |
|
|
|
output_info = history_response.get(prompt_id, {}).get('outputs', {}).get('9', {}).get('images', [{}])[0] |
|
filename = output_info.get('filename', 'unknown.png') |
|
output_url = f"{url}/output/{filename}" |
|
|
|
print(f"Output URL: {output_url}") |
|
|
|
|
|
base64_image = get_image_as_base64(output_url) |
|
if base64_image: |
|
print("Base64 encoded image:") |
|
print(base64_image) |
|
else: |
|
print("Failed to retrieve base64 encoded image.") |
|
|
|
return { |
|
"output_url": output_url, |
|
"base64_image": base64_image |
|
} |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description='Add a prompt to the queue and wait for the output.') |
|
parser.add_argument('--ip', type=str, required=True, help='The public IP address of the pod') |
|
parser.add_argument('--port', type=int, required=True, help='The external port of the pod') |
|
parser.add_argument('--filepath', type=str, required=True, help='The path to the JSON file containing the workflow in api format') |
|
parser.add_argument('--prompt', type=str, help='The prompt to use for the workflow') |
|
parser.add_argument('--steps', type=int, help='Number of steps for the sampler') |
|
parser.add_argument('--seed', type=int, help='Seed for the noise generator') |
|
parser.add_argument('--cfg', type=float, help='Classifier-free guidance scale') |
|
parser.add_argument('--width', type=int, help='Width of the output image') |
|
parser.add_argument('--height', type=int, help='Height of the output image') |
|
parser.add_argument('--lora_name', type=str, help='Name of the LoRA to use') |
|
parser.add_argument('--lora_scale', type=float, help='Scale of the LoRA effect') |
|
|
|
args = parser.parse_args() |
|
result = main(args.ip, args.port, args.filepath, args.prompt, args.steps, args.seed, args.cfg, args.width, args.height, args.lora_name, args.lora_scale) |
|
|
|
|
|
if result and result["base64_image"]: |
|
with open("output_image.txt", "w") as f: |
|
f.write(result["base64_image"]) |
|
print("Base64 image saved to output_image.txt") |