pegasus-samsum / README.md
ch4m3l1on's picture
Update README.md
e1b0758 verified
|
raw
history blame
2.28 kB
metadata
library_name: transformers
base_model: google/pegasus-cnn_dailymail
tags:
  - generated_from_trainer
model-index:
  - name: pegasus-samsum
    results: []

pegasus-samsum

This model is a fine-tuned version of google/pegasus-cnn_dailymail on the SAMsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3986

Model description

The model uses PEGASUS pretrained on cnn-dailymail and it is fine-tuned on the SAMsum dataset in order to get summaries out of conversations

Intended uses & limitations

Summarization on conversations

Training and evaluation data

The training args are the following: num_train_epochs=1, warmup_steps=500, per_device_train_batch_size=1, per_gpu_eval_batch_size=1, weight_decay=0.01, logging_steps=10, push_to_hub=True, evaluation_strategy='steps', eval_steps=500, save_steps=1e6, gradient_accumulation_steps=16, remove_unused_columns=False,

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.5449 0.5431 500 1.3986

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.3