File size: 2,403 Bytes
b57c6a9 3cf0c18 b57c6a9 2e85d09 3cf0c18 b57c6a9 00b08d7 db51581 00b08d7 b57c6a9 db51581 de3aeb2 b57c6a9 eebaaf8 826ad75 00b08d7 2e85d09 8c3afad de3aeb2 b57c6a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
license: cc-by-nc-4.0
base_model: KT-AI/midm-bitext-S-7B-inst-v1
tags:
- generated_from_trainer
model-index:
- name: lora-midm-nsmc
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# lora-midm-nsmc
This model is a fine-tuned version of [KT-AI/midm-bitext-S-7B-inst-v1](https://huggingface.co/KT-AI/midm-bitext-S-7B-inst-v1) on an nsmc dataset.
## Model description
KT-midm modelμ nsmcλ°μ΄ν°λ₯Ό νμ©νμ¬ λ―ΈμΈνλν λͺ¨λΈ
μν 리뷰 λ°μ΄ν°λ₯Ό κΈ°λ°μΌλ‘ μ¬μ©μκ° μμ±ν 리뷰μ κΈμ λλ λΆμ μ νμ
νλ€.
## Intended uses & limitations
### Intended uses
μ¬μ©μκ° μμ±ν 리뷰μ κΈμ λλ λΆμ κ°μ λΆμμ μ 곡ν¨
### Limitaions
μν 리뷰μ νΉνλμ΄ μμΌλ©°, λ€λ₯Έ μ νμλ μ νμ΄ μμ μ μμ
Colab T4 GPUμμ ν
μ€νΈ λμμ
## Training and evaluation data
Training data: nsmc 'train' data μ€ μμ 2000κ°μ μν
Evaluation data: nsmc 'test' data μ€ μμ 1000κ°μ μν
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 300
- mixed_precision_training: Native AMP
### Training results
![image/png](https://cdn-uploads.huggingface.co/production/uploads/652384150f935fa8fd6c6779/jd7jtIHmniBqcYJ3tlEID.png)
TrainOutput(global_step=300, training_loss=1.1105608495076498,
metrics={'train_runtime': 929.3252, 'train_samples_per_second': 0.646,
'train_steps_per_second': 0.323, 'total_flos': 9315508499251200.0,
'train_loss': 1.1105608495076498, 'epoch': 0.3})
### μ νλ
Midm: μ νλ 0.89
| | Positive Prediction(PP) | Negative Prediction(NP) |
|--------------------|---------------------|---------------------|
| True Positive (TP) | 474 | 34 |
| True Negative (TN) | 76 | 416 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|