lora-midm-nsmc / README.md
chaem's picture
Update README.md
de3aeb2
|
raw
history blame
1.68 kB
---
license: cc-by-nc-4.0
base_model: KT-AI/midm-bitext-S-7B-inst-v1
tags:
- generated_from_trainer
model-index:
- name: lora-midm-nsmc
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# lora-midm-nsmc
This model is a fine-tuned version of [KT-AI/midm-bitext-S-7B-inst-v1](https://huggingface.co/KT-AI/midm-bitext-S-7B-inst-v1) on an unknown dataset.
## Model description
KT-midm model을 nsmc데이터λ₯Ό ν™œμš©ν•˜μ—¬ λ―Έμ„ΈνŠœλ‹ν•œ λͺ¨λΈ
## Intended uses & limitations
More information needed
## Training and evaluation data
Training data: nsmc 'train' data 쀑 μƒμœ„ 2000개의 μƒ˜ν”Œ
Evaluation data: nsmc 'test' data 쀑 μƒμœ„ 1000개의 μƒ˜ν”Œ
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 300
- mixed_precision_training: Native AMP
### Training results
## 정확도
Midm: 정확도 0.89
| | Positive Prediction | Negative Prediction |
|--------------------|---------------------|---------------------|
| True Positive (TP) | 474 | 34 |
| True Negative (TN) | 76 | 416 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0