chandrakanthlns's picture
Upload tokenizer
fb1b911 verified
metadata
base_model: facebook/wav2vec2-xls-r-300m
datasets:
  - common_voice_13_0
license: apache-2.0
metrics:
  - wer
tags:
  - generated_from_trainer
model-index:
  - name: wav2vec2-large-xls-r-300m-tamil-commonvoice
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: common_voice_13_0
          type: common_voice_13_0
          config: ta
          split: test
          args: ta
        metrics:
          - type: wer
            value: 1
            name: Wer

wav2vec2-large-xls-r-300m-tamil-commonvoice

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_13_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 7.9682
  • Wer: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
6.0629 0.7737 400 1.5761 0.9986
0.6711 1.5474 800 0.5474 0.7253
0.437 2.3211 1200 0.4898 0.6689
0.3691 3.0948 1600 0.4760 0.6562
0.3942 3.8685 2000 0.8449 0.7908
1.3114 4.6422 2400 1.8169 0.9883
3.0292 5.4159 2800 3.3102 1.0
3.3769 6.1896 3200 3.4855 1.0
4.0469 6.9632 3600 5.2510 1.0
6.6565 7.7369 4000 7.9749 1.0
7.9329 8.5106 4400 7.9682 1.0
7.925 9.2843 4800 7.9682 1.0
7.9128 10.0580 5200 7.9682 1.0
7.9132 10.8317 5600 7.9682 1.0
7.9118 11.6054 6000 7.9682 1.0
7.8873 12.3791 6400 7.9682 1.0
7.9357 13.1528 6800 7.9682 1.0
7.9311 13.9265 7200 7.9682 1.0
7.9049 14.7002 7600 7.9682 1.0
7.9234 15.4739 8000 7.9682 1.0
7.9521 16.2476 8400 7.9682 1.0
7.8886 17.0213 8800 7.9682 1.0
7.8915 17.7950 9200 7.9682 1.0
7.9265 18.5687 9600 7.9682 1.0
7.9366 19.3424 10000 7.9682 1.0
7.8725 20.1161 10400 7.9682 1.0
7.9321 20.8897 10800 7.9682 1.0
7.9282 21.6634 11200 7.9682 1.0
7.9025 22.4371 11600 7.9682 1.0
7.8889 23.2108 12000 7.9682 1.0
7.9366 23.9845 12400 7.9682 1.0
7.9205 24.7582 12800 7.9682 1.0
7.8946 25.5319 13200 7.9682 1.0
7.9446 26.3056 13600 7.9682 1.0
7.8891 27.0793 14000 7.9682 1.0
7.9088 27.8530 14400 7.9682 1.0
7.9546 28.6267 14800 7.9682 1.0
7.8624 29.4004 15200 7.9682 1.0

Framework versions

  • Transformers 4.40.1
  • Pytorch 1.13.1+cu117
  • Datasets 2.18.0
  • Tokenizers 0.19.1