|
--- |
|
license: gemma |
|
library_name: peft |
|
tags: |
|
- alignment-handbook |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
base_model: google/gemma-7b |
|
datasets: |
|
- chansung/no_robots_only_coding |
|
model-index: |
|
- name: gemma-7b-sft-qlora-no-robots |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# gemma-7b-sft-qlora-no-robots |
|
|
|
This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the chansung/no_robots_only_coding dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 4.2389 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- total_eval_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 17.168 | 1.0 | 3 | 15.0876 | |
|
| 14.9207 | 2.0 | 6 | 8.7644 | |
|
| 14.9207 | 3.0 | 9 | 4.8425 | |
|
| 7.3214 | 4.0 | 12 | 3.0239 | |
|
| 2.9627 | 5.0 | 15 | 2.2565 | |
|
| 2.9627 | 6.0 | 18 | 1.8792 | |
|
| 1.7971 | 7.0 | 21 | 1.7648 | |
|
| 1.7971 | 8.0 | 24 | 1.7012 | |
|
| 1.4939 | 9.0 | 27 | 1.5479 | |
|
| 1.2756 | 10.0 | 30 | 1.5051 | |
|
| 1.2756 | 11.0 | 33 | 1.3975 | |
|
| 1.0884 | 12.0 | 36 | 1.4440 | |
|
| 1.0884 | 13.0 | 39 | 1.4135 | |
|
| 0.9429 | 14.0 | 42 | 1.4587 | |
|
| 0.7653 | 15.0 | 45 | 1.4874 | |
|
| 0.7653 | 16.0 | 48 | 1.5958 | |
|
| 0.6424 | 17.0 | 51 | 1.5928 | |
|
| 0.6424 | 18.0 | 54 | 1.6838 | |
|
| 0.5346 | 19.0 | 57 | 1.8264 | |
|
| 0.4249 | 20.0 | 60 | 1.9655 | |
|
| 0.4249 | 21.0 | 63 | 2.1370 | |
|
| 0.3347 | 22.0 | 66 | 2.6981 | |
|
| 0.3347 | 23.0 | 69 | 2.7131 | |
|
| 0.2655 | 24.0 | 72 | 2.7668 | |
|
| 0.2026 | 25.0 | 75 | 2.8615 | |
|
| 0.2026 | 26.0 | 78 | 3.1596 | |
|
| 0.1588 | 27.0 | 81 | 3.3286 | |
|
| 0.1588 | 28.0 | 84 | 3.5463 | |
|
| 0.1319 | 29.0 | 87 | 3.3686 | |
|
| 0.1111 | 30.0 | 90 | 3.6859 | |
|
| 0.1111 | 31.0 | 93 | 3.7810 | |
|
| 0.0939 | 32.0 | 96 | 3.7559 | |
|
| 0.0939 | 33.0 | 99 | 3.9164 | |
|
| 0.082 | 34.0 | 102 | 3.9693 | |
|
| 0.0709 | 35.0 | 105 | 4.0430 | |
|
| 0.0709 | 36.0 | 108 | 4.1017 | |
|
| 0.0638 | 37.0 | 111 | 4.1449 | |
|
| 0.0638 | 38.0 | 114 | 4.1639 | |
|
| 0.0597 | 39.0 | 117 | 4.1880 | |
|
| 0.0556 | 40.0 | 120 | 4.2123 | |
|
| 0.0556 | 41.0 | 123 | 4.2196 | |
|
| 0.0535 | 42.0 | 126 | 4.2262 | |
|
| 0.0535 | 43.0 | 129 | 4.2301 | |
|
| 0.0521 | 44.0 | 132 | 4.2314 | |
|
| 0.0521 | 45.0 | 135 | 4.2365 | |
|
| 0.0521 | 46.0 | 138 | 4.2350 | |
|
| 0.0525 | 47.0 | 141 | 4.2364 | |
|
| 0.0525 | 48.0 | 144 | 4.2320 | |
|
| 0.0509 | 49.0 | 147 | 4.2361 | |
|
| 0.0505 | 50.0 | 150 | 4.2389 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.7.1 |
|
- Transformers 4.39.0.dev0 |
|
- Pytorch 2.2.2+cu121 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.15.2 |