|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: roberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# model |
|
|
|
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5440 |
|
- Precision: 0.3143 |
|
- Recall: 0.2170 |
|
- F1: 0.2568 |
|
- Accuracy: 0.8900 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.2733 | 0.4292 | 100 | 0.4491 | 0.3382 | 0.1454 | 0.2033 | 0.9003 | |
|
| 0.2635 | 0.8584 | 200 | 0.4566 | 0.3327 | 0.1848 | 0.2377 | 0.8962 | |
|
| 0.202 | 1.2876 | 300 | 0.5266 | 0.3377 | 0.1599 | 0.2171 | 0.8990 | |
|
| 0.1981 | 1.7167 | 400 | 0.5384 | 0.3529 | 0.1495 | 0.2101 | 0.9016 | |
|
| 0.1904 | 2.1459 | 500 | 0.5169 | 0.3004 | 0.2399 | 0.2667 | 0.8846 | |
|
| 0.1682 | 2.5751 | 600 | 0.5660 | 0.3339 | 0.1963 | 0.2472 | 0.8954 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.0 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|