charlescao2023's picture
Upload folder using huggingface_hub
58cb504 verified
metadata
tags:
  - generated_from_trainer
model-index:
  - name: vicuna_13b_stage1
    results: []

Built with Axolotl

vicuna_13b_stage1

This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2017

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 40
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.9535 0.02 40 1.9456
1.8556 0.04 80 1.7714
1.791 0.06 120 1.7425
1.6622 0.08 160 1.7164
1.8169 0.1 200 1.7154
1.7356 0.12 240 1.7026
1.6051 0.14 280 1.7104
1.7925 0.16 320 1.7127
1.8257 0.18 360 1.7055
1.7057 0.2 400 1.6906
1.9282 0.22 440 1.6746
1.668 0.24 480 1.7052
1.6273 0.26 520 1.6620
1.6136 0.28 560 1.6616
1.4754 0.3 600 1.6389
1.4024 0.32 640 1.6038
1.6773 0.34 680 1.5743
1.6008 0.36 720 1.5607
1.568 0.39 760 1.5236
1.4922 0.41 800 1.5158
1.4667 0.43 840 1.4938
1.5653 0.45 880 1.4692
1.331 0.47 920 1.4581
1.4019 0.49 960 1.4290
1.4925 0.51 1000 1.4087
1.4772 0.53 1040 1.3961
1.4728 0.55 1080 1.3817
1.4555 0.57 1120 1.3559
1.5487 0.59 1160 1.3399
1.3888 0.61 1200 1.3212
1.2544 0.63 1240 1.3099
1.2657 0.65 1280 1.2972
1.3641 0.67 1320 1.2815
1.2915 0.69 1360 1.2687
1.4182 0.71 1400 1.2541
1.2515 0.73 1440 1.2427
1.2287 0.75 1480 1.2352
1.1886 0.77 1520 1.2285
1.2651 0.79 1560 1.2219
1.3341 0.81 1600 1.2145
1.2357 0.83 1640 1.2107
1.0767 0.85 1680 1.2080
1.2158 0.87 1720 1.2051
1.2042 0.89 1760 1.2034
1.1887 0.91 1800 1.2023
1.2662 0.93 1840 1.2018
1.1866 0.95 1880 1.2017
1.1798 0.97 1920 1.2017
1.336 0.99 1960 1.2017

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.3.1+cu121
  • Datasets 2.14.7
  • Tokenizers 0.14.1