charlesfrye's picture
Model save
268ab08 verified
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: ap-fEz97qWiEaKtCs943k0PtZ
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ap-fEz97qWiEaKtCs943k0PtZ
This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7453
- Model Preparation Time: 0.0212
- Wer: 0.2339
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 400
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer |
|:-------------:|:------:|:----:|:---------------:|:----------------------:|:------:|
| 0.2538 | 0.9791 | 41 | 0.2886 | 0.0212 | 0.1134 |
| 0.1828 | 1.9791 | 82 | 0.3033 | 0.0212 | 0.1182 |
| 0.1233 | 2.9791 | 123 | 0.3724 | 0.0212 | 0.1248 |
| 0.1182 | 3.9791 | 164 | 0.4213 | 0.0212 | 0.1399 |
| 0.1181 | 4.9791 | 205 | 0.4813 | 0.0212 | 0.1417 |
| 0.1273 | 5.9791 | 246 | 0.5741 | 0.0212 | 0.1553 |
| 0.1237 | 6.9791 | 287 | 0.6128 | 0.0212 | 0.1759 |
| 0.1176 | 7.9791 | 328 | 0.6665 | 0.0212 | 0.1823 |
| 0.1076 | 8.9791 | 369 | 0.7048 | 0.0212 | 0.1929 |
| 0.1357 | 9.9791 | 410 | 0.7453 | 0.0212 | 0.2339 |
### Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0