ap-vHLaj4AuIgw86bx1KZb38G
This model is a fine-tuned version of openai/whisper-large-v3 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4343
- Model Preparation Time: 0.022
- Wer: 0.1096
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 400
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer |
---|---|---|---|---|---|
0.3828 | 0.9791 | 41 | 0.3761 | 0.022 | 0.1424 |
0.2079 | 1.9791 | 82 | 0.3005 | 0.022 | 0.1094 |
0.1434 | 2.9791 | 123 | 0.3007 | 0.022 | 0.1087 |
0.0763 | 3.9791 | 164 | 0.3298 | 0.022 | 0.1120 |
0.0564 | 4.9791 | 205 | 0.3544 | 0.022 | 0.1250 |
0.0305 | 5.9791 | 246 | 0.4075 | 0.022 | 0.1194 |
0.0319 | 6.9791 | 287 | 0.3782 | 0.022 | 0.1212 |
0.0244 | 7.9791 | 328 | 0.4193 | 0.022 | 0.1097 |
0.0212 | 8.9791 | 369 | 0.4446 | 0.022 | 0.1226 |
0.0202 | 9.9791 | 410 | 0.4343 | 0.022 | 0.1096 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for charlesfrye/ap-vHLaj4AuIgw86bx1KZb38G
Base model
openai/whisper-large-v3