ap-xSqNwzGtnWYrDqwzSihwx4
This model is a fine-tuned version of openai/whisper-large-v3 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3177
- Model Preparation Time: 0.0221
- Wer: 0.1185
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 400
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer |
---|---|---|---|---|---|
0.8267 | 0.9791 | 41 | 0.8658 | 0.0221 | 0.1948 |
0.7767 | 1.9791 | 82 | 0.8411 | 0.0221 | 0.1936 |
0.7309 | 2.9791 | 123 | 0.7830 | 0.0221 | 0.1889 |
0.6692 | 3.9791 | 164 | 0.7042 | 0.0221 | 0.1764 |
0.6023 | 4.9791 | 205 | 0.6325 | 0.0221 | 0.1657 |
0.4923 | 5.9791 | 246 | 0.5603 | 0.0221 | 0.1577 |
0.3512 | 6.9791 | 287 | 0.4087 | 0.0221 | 0.1533 |
0.275 | 7.9791 | 328 | 0.3569 | 0.0221 | 0.1279 |
0.2927 | 8.9791 | 369 | 0.3339 | 0.0221 | 0.1217 |
0.2657 | 9.9791 | 410 | 0.3177 | 0.0221 | 0.1185 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for charlesfrye/ap-xSqNwzGtnWYrDqwzSihwx4
Base model
openai/whisper-large-v3