my_awesome_asr_mind_model

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8925
  • Wer: 0.4558

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.5119 1.77 100 4.1083 1.0
3.287 3.54 200 3.2437 1.0
3.1513 5.31 300 3.1230 1.0
3.0487 7.08 400 3.0786 1.0
3.0241 8.85 500 3.0934 1.0
2.9968 10.62 600 2.9948 1.0
2.9601 12.39 700 2.9549 1.0
2.9061 14.16 800 2.8990 1.0
2.3543 15.93 900 2.2582 0.9272
1.3794 17.7 1000 1.7532 0.8179
0.8947 19.47 1100 1.2148 0.6710
0.5989 21.24 1200 1.3229 0.5579
0.5861 23.01 1300 1.4233 0.5267
0.4311 24.78 1400 1.5458 0.5104
0.3286 26.55 1500 1.6509 0.5039
0.2765 28.32 1600 1.6818 0.4948
0.2541 30.09 1700 1.7650 0.4629
0.2151 31.86 1800 1.7185 0.4460
0.1959 33.63 1900 1.9164 0.4577
0.1909 35.4 2000 1.8925 0.4558

Framework versions

  • Transformers 4.37.1
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
15
Safetensors
Model size
94.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for chasedreaminf/my_awesome_asr_mind_model

Finetuned
(693)
this model