Llama-3.1-8B-Instruct-SFT-700
This model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct on the bct_non_cot_sft_700 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0484
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0723 | 1.2698 | 50 | 0.8589 |
0.1579 | 2.5397 | 100 | 0.0773 |
0.0839 | 3.8095 | 150 | 0.0536 |
0.0861 | 5.0794 | 200 | 0.0506 |
0.0624 | 6.3492 | 250 | 0.0495 |
0.0824 | 7.6190 | 300 | 0.0486 |
0.0931 | 8.8889 | 350 | 0.0484 |
Framework versions
- PEFT 0.12.0
- Transformers 4.45.2
- Pytorch 2.3.0
- Datasets 2.19.0
- Tokenizers 0.20.0
- Downloads last month
- 13
Model tree for chchen/Llama-3.1-8B-Instruct-SFT-700
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct