File size: 10,044 Bytes
9e826e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import os
from fairseq import options, utils
from fairseq.data import (
    ConcatDataset,
    data_utils,
    LanguagePairDataset)

from ..data import SubsampleLanguagePairDataset

import logging
from fairseq.tasks import register_task
from fairseq.tasks.translation import TranslationTask, load_langpair_dataset

logger = logging.getLogger(__name__)


def concat_language_pair_dataset(*language_pair_datasets, up_sample_ratio=None,
                                 all_dataset_upsample_ratio=None):
    logger.info("To cancat the language pairs")
    dataset_number = len(language_pair_datasets)
    if dataset_number == 1:
        return language_pair_datasets[0]
    elif dataset_number < 1:
        raise ValueError("concat_language_pair_dataset needs at least on dataset")
    # for dataset in language_pair_datasets:
    #     assert isinstance(dataset, LanguagePairDataset), "concat_language_pair_dataset can only concat language pair" \
    #                                                      "dataset"
    
    src_list = [language_pair_datasets[0].src]
    tgt_list = [language_pair_datasets[0].tgt]
    src_dict = language_pair_datasets[0].src_dict
    tgt_dict = language_pair_datasets[0].tgt_dict
    left_pad_source = language_pair_datasets[0].left_pad_source
    left_pad_target = language_pair_datasets[0].left_pad_target
    
    logger.info("To construct the source dataset list and the target dataset list")
    for dataset in language_pair_datasets[1:]:
        assert dataset.src_dict == src_dict
        assert dataset.tgt_dict == tgt_dict
        assert dataset.left_pad_source == left_pad_source
        assert dataset.left_pad_target == left_pad_target
        src_list.append(dataset.src)
        tgt_list.append(dataset.tgt)
    logger.info("Have constructed the source dataset list and the target dataset list")
    
    if all_dataset_upsample_ratio is None:
        sample_ratio = [1] * len(src_list)
        sample_ratio[0] = up_sample_ratio
    else:
        sample_ratio = [int(t) for t in all_dataset_upsample_ratio.strip().split(",")]
        assert len(sample_ratio) == len(src_list)
    src_dataset = ConcatDataset(src_list, sample_ratios=sample_ratio)
    tgt_dataset = ConcatDataset(tgt_list, sample_ratios=sample_ratio)
    res = LanguagePairDataset(
        src_dataset, src_dataset.sizes, src_dict,
        tgt_dataset, tgt_dataset.sizes, tgt_dict,
        left_pad_source=left_pad_source,
        left_pad_target=left_pad_target,
    )
    logger.info("Have created the concat language pair dataset")
    return res


@register_task('translation_w_mono')
class TranslationWithMonoTask(TranslationTask):
    """
    Translate from one (source) language to another (target) language.

    Args:
        src_dict (~fairseq.data.Dictionary): dictionary for the source language
        tgt_dict (~fairseq.data.Dictionary): dictionary for the target language

    .. note::

        The translation task is compatible with :mod:`fairseq-train`,
        :mod:`fairseq-generate` and :mod:`fairseq-interactive`.

    The translation task provides the following additional command-line
    arguments:

    .. argparse::
        :ref: fairseq.tasks.translation_parser
        :prog:
    """
    
    @staticmethod
    def add_args(parser):
        """Add task-specific arguments to the parser."""
        # fmt: off
        TranslationTask.add_args(parser)
        parser.add_argument('--mono-data', default=None, help='monolingual data, split by :')
        parser.add_argument('--mono-one-split-each-epoch', action='store_true', default=False, help='use on split of monolingual data at each epoch')
        parser.add_argument('--parallel-ratio', default=1.0, type=float, help='subsample ratio of parallel data')
        parser.add_argument('--mono-ratio', default=1.0, type=float, help='subsample ratio of mono data')
    
    def __init__(self, args, src_dict, tgt_dict):
        super().__init__(args, src_dict, tgt_dict)
        self.src_dict = src_dict
        self.tgt_dict = tgt_dict
        self.update_number = 0
    
    @classmethod
    def setup_task(cls, args, **kwargs):
        """Setup the task (e.g., load dictionaries).

        Args:
            args (argparse.Namespace): parsed command-line arguments
        """
        args.left_pad_source = options.eval_bool(args.left_pad_source)
        args.left_pad_target = options.eval_bool(args.left_pad_target)
        if getattr(args, 'raw_text', False):
            utils.deprecation_warning('--raw-text is deprecated, please use --dataset-impl=raw')
            args.dataset_impl = 'raw'
        elif getattr(args, 'lazy_load', False):
            utils.deprecation_warning('--lazy-load is deprecated, please use --dataset-impl=lazy')
            args.dataset_impl = 'lazy'
        
        paths = utils.split_paths(args.data)
        assert len(paths) > 0
        # find language pair automatically
        if args.source_lang is None or args.target_lang is None:
            args.source_lang, args.target_lang = data_utils.infer_language_pair(paths[0])
        if args.source_lang is None or args.target_lang is None:
            raise Exception('Could not infer language pair, please provide it explicitly')
        
        # load dictionaries
        src_dict = cls.load_dictionary(os.path.join(paths[0], 'dict.{}.txt'.format(args.source_lang)))
        tgt_dict = cls.load_dictionary(os.path.join(paths[0], 'dict.{}.txt'.format(args.target_lang)))
        assert src_dict.pad() == tgt_dict.pad()
        assert src_dict.eos() == tgt_dict.eos()
        assert src_dict.unk() == tgt_dict.unk()
        logger.info('| [{}] dictionary: {} types'.format(args.source_lang, len(src_dict)))
        logger.info('| [{}] dictionary: {} types'.format(args.target_lang, len(tgt_dict)))
        
        return cls(args, src_dict, tgt_dict)
    
    def load_dataset(self, split, epoch=0, combine=False, **kwargs):
        """Load a given dataset split.

        Args:
            split (str): name of the split (e.g., train, valid, test)
        """
        logger.info("To load the dataset {}".format(split))
        paths = utils.split_paths(self.args.data)
        assert len(paths) > 0
        if split != getattr(self.args, "train_subset", None):
            # if not training data set, use the first shard for valid and test
            paths = paths[:1]
        data_path = paths[(epoch - 1) % len(paths)]
        
        mono_paths = utils.split_paths(self.args.mono_data)
        
        # infer langcode
        src, tgt = self.args.source_lang, self.args.target_lang
        
        parallel_data = load_langpair_dataset(
            data_path, split, src, self.src_dict, tgt, self.tgt_dict,
            combine=combine, dataset_impl=self.args.dataset_impl,
            upsample_primary=self.args.upsample_primary,
            left_pad_source=self.args.left_pad_source,
            left_pad_target=self.args.left_pad_target,
            max_source_positions=self.args.max_source_positions,
            max_target_positions=self.args.max_target_positions,
            load_alignments=self.args.load_alignments,
            num_buckets=self.args.num_batch_buckets,
            shuffle=(split != "test"),
            pad_to_multiple=self.args.required_seq_len_multiple,
        )
        if split == "train":
            parallel_data = SubsampleLanguagePairDataset(parallel_data, size_ratio=self.args.parallel_ratio,
                                                         seed=self.args.seed,
                                                         epoch=epoch)
            if self.args.mono_one_split_each_epoch:
                mono_path = mono_paths[(epoch - 1) % len(mono_paths)]  # each at one epoch
                mono_data = load_langpair_dataset(
                    mono_path, split, src, self.src_dict, tgt, self.tgt_dict,
                    combine=combine, dataset_impl=self.args.dataset_impl,
                    upsample_primary=self.args.upsample_primary,
                    left_pad_source=self.args.left_pad_source,
                    left_pad_target=self.args.left_pad_target,
                    max_source_positions=self.args.max_source_positions,
                    shuffle=(split != "test"),
                    max_target_positions=self.args.max_target_positions,
                )
                mono_data = SubsampleLanguagePairDataset(mono_data, size_ratio=self.args.mono_ratio,
                                                         seed=self.args.seed,
                                                         epoch=epoch)
                all_dataset = [parallel_data, mono_data]
            else:
                mono_datas = []
                for mono_path in mono_paths:
                    mono_data = load_langpair_dataset(
                        mono_path, split, src, self.src_dict, tgt, self.tgt_dict,
                        combine=combine, dataset_impl=self.args.dataset_impl,
                        upsample_primary=self.args.upsample_primary,
                        left_pad_source=self.args.left_pad_source,
                        left_pad_target=self.args.left_pad_target,
                        max_source_positions=self.args.max_source_positions,
                        shuffle=(split != "test"),
                        max_target_positions=self.args.max_target_positions,
                    )
                    mono_data = SubsampleLanguagePairDataset(mono_data, size_ratio=self.args.mono_ratio,
                                                             seed=self.args.seed,
                                                             epoch=epoch)
                    mono_datas.append(mono_data)
                all_dataset = [parallel_data] + mono_datas
            self.datasets[split] = ConcatDataset(all_dataset)
        else:
            self.datasets[split] = parallel_data