|
from fairseq.models import register_model_architecture |
|
|
|
|
|
@register_model_architecture('transformer', 'transformer_bigger') |
|
def transformer_bigger(args): |
|
args.attention_dropout = getattr(args, 'attention_dropout', 0.3) |
|
args.activation_dropout = getattr(args, 'activation_dropout', 0.3) |
|
args.dropout = getattr(args, 'dropout', 0.1) |
|
args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 15000) |
|
args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 15000) |
|
args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True) |
|
from fairseq.models.transformer import transformer_wmt_en_de_big_t2t |
|
transformer_wmt_en_de_big_t2t(args) |
|
|
|
|
|
@register_model_architecture('transformer', 'transformer_bigger_16384') |
|
def transformer_bigger_16384(args): |
|
args.attention_dropout = getattr(args, 'attention_dropout', 0.1) |
|
args.activation_dropout = getattr(args, 'activation_dropout', 0.1) |
|
args.dropout = getattr(args, 'dropout', 0.1) |
|
args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 16384) |
|
args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 16384) |
|
args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True) |
|
from fairseq.models.transformer import transformer_wmt_en_de_big_t2t |
|
transformer_wmt_en_de_big_t2t(args) |
|
|
|
|
|
@register_model_architecture('transformer', 'transformer_bigger_no_share') |
|
def transformer_bigger_no_share(args): |
|
args.attention_dropout = getattr(args, 'attention_dropout', 0.3) |
|
args.activation_dropout = getattr(args, 'activation_dropout', 0.3) |
|
args.dropout = getattr(args, 'dropout', 0.1) |
|
args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 15000) |
|
args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 15000) |
|
args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', False) |
|
from fairseq.models.transformer import transformer_wmt_en_de_big_t2t |
|
transformer_wmt_en_de_big_t2t(args) |
|
|
|
|
|
@register_model_architecture('transformer', 'transformer_deeper') |
|
def transformer_deeper(args): |
|
args.encoder_layers = getattr(args, 'encoder_layers', 15) |
|
args.dense = False |
|
args.bottleneck_component = getattr(args, 'bottleneck_component', 'mean_pool') |
|
args.attention_dropout = getattr(args, 'attention_dropout', 0.1) |
|
args.activation_dropout = getattr(args, 'activation_dropout', 0.1) |
|
args.dropout = getattr(args, 'dropout', 0.1) |
|
|
|
|
|
args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True) |
|
from fairseq.models.transformer import transformer_wmt_en_de_big_t2t |
|
transformer_wmt_en_de_big_t2t(args) |
|
|
|
|
|
@register_model_architecture('transformer', 'transformer_deeper_no_share') |
|
def transformer_deeper_no_share(args): |
|
args.encoder_layers = getattr(args, 'encoder_layers', 15) |
|
args.dense = False |
|
args.bottleneck_component = getattr(args, 'bottleneck_component', 'mean_pool') |
|
args.attention_dropout = getattr(args, 'attention_dropout', 0.1) |
|
args.activation_dropout = getattr(args, 'activation_dropout', 0.1) |
|
args.dropout = getattr(args, 'dropout', 0.1) |
|
|
|
|
|
args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', False) |
|
from fairseq.models.transformer import transformer_wmt_en_de_big_t2t |
|
transformer_wmt_en_de_big_t2t(args) |
|
|
|
|
|
@register_model_architecture('transformer', 'transformer_deeper_dense') |
|
def transformer_deeper_no_share(args): |
|
args.encoder_layers = getattr(args, 'encoder_layers', 15) |
|
args.dense = True |
|
args.bottleneck_component = 'mean_pool' |
|
args.attention_dropout = getattr(args, 'attention_dropout', 0.1) |
|
args.activation_dropout = getattr(args, 'activation_dropout', 0.1) |
|
args.dropout = getattr(args, 'dropout', 0.1) |
|
|
|
|
|
args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True) |
|
from fairseq.models.transformer import transformer_wmt_en_de_big_t2t |
|
transformer_wmt_en_de_big_t2t(args) |
|
|
|
|
|
@register_model_architecture('transformer', 'transformer_deeper_dense_no_share') |
|
def transformer_deeper_no_share(args): |
|
args.encoder_layers = getattr(args, 'encoder_layers', 15) |
|
args.dense = True |
|
args.bottleneck_component = 'mean_pool' |
|
args.attention_dropout = getattr(args, 'attention_dropout', 0.1) |
|
args.activation_dropout = getattr(args, 'activation_dropout', 0.1) |
|
args.dropout = getattr(args, 'dropout', 0.1) |
|
|
|
|
|
args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', False) |
|
from fairseq.models.transformer import transformer_wmt_en_de_big_t2t |
|
transformer_wmt_en_de_big_t2t(args) |
|
|
|
|
|
@register_model_architecture('transformer', 'transformer_big') |
|
def transformer_big(args): |
|
args.dropout = getattr(args, 'dropout', 0.1) |
|
args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True) |
|
from fairseq.models.transformer import transformer_wmt_en_de_big_t2t |
|
transformer_wmt_en_de_big_t2t(args) |
|
|
|
|
|
@register_model_architecture('transformer', 'transformer_big_emb512') |
|
def transformer_big_emb512(args): |
|
args.dropout = getattr(args, 'dropout', 0.1) |
|
args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True) |
|
args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 512) |
|
args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 512) |
|
from fairseq.models.transformer import transformer_wmt_en_de_big_t2t |
|
transformer_wmt_en_de_big_t2t(args) |
|
|
|
|
|
@register_model_architecture('transformer', 'transformer_big_no_share') |
|
def transformer_big_no_share(args): |
|
args.dropout = getattr(args, 'dropout', 0.1) |
|
args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', False) |
|
from fairseq.models.transformer import transformer_wmt_en_de_big_t2t |
|
transformer_wmt_en_de_big_t2t(args) |
|
|
|
|
|
@register_model_architecture('transformer', 'transformer_big_16e4d') |
|
def transformer_big_16e4d(args): |
|
args.dropout = getattr(args, 'dropout', 0.2) |
|
args.encoder_layers = getattr(args, 'encoder_layers', 16) |
|
args.decoder_layers = getattr(args, 'decoder_layers', 4) |
|
args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 1024) |
|
args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 1024) |
|
args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 4096) |
|
args.encoder_attention_heads = getattr(args, 'encoder_attention_heads', 16) |
|
args.decoder_attention_heads = getattr(args, 'decoder_attention_heads', 16) |
|
args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True) |
|
from fairseq.models.transformer import transformer_wmt_en_de_big_t2t |
|
transformer_wmt_en_de_big_t2t(args) |
|
|
|
|
|
@register_model_architecture('transformer', 'transformer_big_16e6d') |
|
def transformer_big_16e6d(args): |
|
args.dropout = getattr(args, 'dropout', 0.2) |
|
args.encoder_layers = getattr(args, 'encoder_layers', 16) |
|
args.decoder_layers = getattr(args, 'decoder_layers', 6) |
|
args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 1024) |
|
args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 1024) |
|
args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 4096) |
|
args.encoder_attention_heads = getattr(args, 'encoder_attention_heads', 16) |
|
args.decoder_attention_heads = getattr(args, 'decoder_attention_heads', 16) |
|
args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True) |
|
from fairseq.models.transformer import transformer_wmt_en_de_big_t2t |
|
transformer_wmt_en_de_big_t2t(args) |
|
|
|
|
|
@register_model_architecture('transformer', 'transformer_base') |
|
def transformer_bigger(args): |
|
args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True) |
|
from fairseq.models.transformer import transformer_wmt_en_de |
|
transformer_wmt_en_de(args) |
|
|
|
|
|
@register_model_architecture('transformer', 'transformer_mid_50e6d') |
|
def transformer_mid_50e6d(args): |
|
args.dropout = getattr(args, 'dropout', 0.1) |
|
args.encoder_layers = getattr(args, 'encoder_layers', 50) |
|
args.decoder_layers = getattr(args, 'decoder_layers', 6) |
|
args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 768) |
|
args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 768) |
|
args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 3072) |
|
args.encoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 3072) |
|
args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True) |
|
from fairseq.models.transformer import transformer_wmt_en_de_big_t2t |
|
transformer_wmt_en_de_big_t2t(args) |
|
|
|
|
|
@register_model_architecture('transformer', 'transformer_big_t2t_12e12d') |
|
def transformer_big_t2t_12e12d(args): |
|
args.dropout = getattr(args, 'dropout', 0.1) |
|
args.encoder_layers = getattr(args, 'encoder_layers', 12) |
|
args.decoder_layers = getattr(args, 'decoder_layers', 12) |
|
from fairseq.models.transformer import transformer_wmt_en_de_big_t2t |
|
transformer_wmt_en_de_big_t2t(args) |
|
|
|
|
|
@register_model_architecture('transformer', 'mix_transformer_mid_50e6d') |
|
def mix_transformer_mid_50e6d(args): |
|
args.mix_prepost_norm = getattr(args, "mix_prepost_norm", True) |
|
args.dropout = getattr(args, 'dropout', 0.1) |
|
args.encoder_layers = getattr(args, 'encoder_layers', 50) |
|
args.decoder_layers = getattr(args, 'decoder_layers', 6) |
|
args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 768) |
|
args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 768) |
|
args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 3072) |
|
args.encoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 3072) |
|
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) |
|
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) |
|
args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True) |
|
args.mix_type = getattr(args, "mix_type", "learnable") |
|
from fairseq.models.transformer import transformer_wmt_en_de_big_t2t |
|
transformer_wmt_en_de_big_t2t(args) |
|
|
|
|
|
@register_model_architecture('transformer', 're_zero_transformer_mid_50e6d') |
|
def re_zero_transformer_mid_50e6d(args): |
|
args.dropout = getattr(args, 'dropout', 0.1) |
|
args.encoder_layers = getattr(args, 'encoder_layers', 50) |
|
args.decoder_layers = getattr(args, 'decoder_layers', 6) |
|
args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 768) |
|
args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 768) |
|
args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 3072) |
|
args.encoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 3072) |
|
args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True) |
|
args.re_zero = getattr(args, "re_zero", True) |
|
from fairseq.models.transformer import transformer_wmt_en_de_big_t2t |
|
transformer_wmt_en_de_big_t2t(args) |
|
|
|
|
|
@register_model_architecture('transformer', 'transformer_mid_50e3d_ed3072') |
|
def transformer_mid_50e3d_ed3072(args): |
|
args.dropout = getattr(args, 'dropout', 0.1) |
|
args.encoder_layers = getattr(args, 'encoder_layers', 50) |
|
args.decoder_layers = getattr(args, 'decoder_layers', 3) |
|
args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 768) |
|
args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 768) |
|
args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 3072) |
|
args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 3072) |
|
args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True) |
|
from fairseq.models.transformer import transformer_wmt_en_de_big_t2t |
|
transformer_wmt_en_de_big_t2t(args) |
|
|
|
|
|
@register_model_architecture('transformer', 'mix_transformer_mid_50e6d_3000fix_10000decay') |
|
def mix_transformer_mid_50e6d_3000fix_10000decay(args): |
|
args.mix_prepost_norm = getattr(args, "mix_prepost_norm", True) |
|
args.mix_type = getattr(args, "mix_type", "step_moving") |
|
args.pre_steps = getattr(args, "pre_steps", 3000) |
|
args.change_steps = getattr(args, "change_steps", 10000) |
|
|
|
args.dropout = getattr(args, 'dropout', 0.1) |
|
args.encoder_layers = getattr(args, 'encoder_layers', 50) |
|
args.decoder_layers = getattr(args, 'decoder_layers', 6) |
|
args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 768) |
|
args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 768) |
|
args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 3072) |
|
args.encoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 3072) |
|
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) |
|
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) |
|
args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True) |
|
from fairseq.models.transformer import transformer_wmt_en_de_big_t2t |
|
transformer_wmt_en_de_big_t2t(args) |
|
|
|
|
|
@register_model_architecture('transformer', 'mix_transformer_mid_50e6d_7000fix_7000decay') |
|
def mix_transformer_mid_50e6d_3000fix_10000decay(args): |
|
args.mix_prepost_norm = getattr(args, "mix_prepost_norm", True) |
|
args.mix_type = getattr(args, "mix_type", "step_moving") |
|
args.pre_steps = getattr(args, "pre_steps", 7000) |
|
args.change_steps = getattr(args, "change_steps", 7000) |
|
|
|
args.dropout = getattr(args, 'dropout', 0.1) |
|
args.encoder_layers = getattr(args, 'encoder_layers', 50) |
|
args.decoder_layers = getattr(args, 'decoder_layers', 6) |
|
args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 768) |
|
args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 768) |
|
args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 3072) |
|
args.encoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 3072) |
|
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) |
|
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) |
|
args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True) |
|
from fairseq.models.transformer import transformer_wmt_en_de_big_t2t |
|
transformer_wmt_en_de_big_t2t(args) |
|
|
|
|
|
@register_model_architecture('transformer', 'transformer_mid_75e6d') |
|
def transformer_mid_75e6d(args): |
|
args.dropout = getattr(args, 'dropout', 0.1) |
|
args.encoder_layers = getattr(args, 'encoder_layers', 75) |
|
args.decoder_layers = getattr(args, 'decoder_layers', 6) |
|
args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 768) |
|
args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 768) |
|
args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 3072) |
|
args.encoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 3072) |
|
args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True) |
|
from fairseq.models.transformer import transformer_wmt_en_de_big_t2t |
|
transformer_wmt_en_de_big_t2t(args) |
|
|
|
|
|
@register_model_architecture('transformer', 'transformer_mid_25e6d') |
|
def transformer_mid_25e6d(args): |
|
args.dropout = getattr(args, 'dropout', 0.1) |
|
args.encoder_layers = getattr(args, 'encoder_layers', 25) |
|
args.decoder_layers = getattr(args, 'decoder_layers', 6) |
|
args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 768) |
|
args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 768) |
|
args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 3072) |
|
args.encoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 3072) |
|
args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True) |
|
from fairseq.models.transformer import transformer_wmt_en_de_big_t2t |
|
transformer_wmt_en_de_big_t2t(args) |
|
|
|
|
|
@register_model_architecture('transformer', 'transformer_mid_25e6d_ed3072') |
|
def transformer_mid_25e6d_ed3072(args): |
|
args.dropout = getattr(args, 'dropout', 0.1) |
|
args.encoder_layers = getattr(args, 'encoder_layers', 25) |
|
args.decoder_layers = getattr(args, 'decoder_layers', 6) |
|
args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 768) |
|
args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 768) |
|
args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 3072) |
|
args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 3072) |
|
args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True) |
|
from fairseq.models.transformer import transformer_wmt_en_de_big_t2t |
|
transformer_wmt_en_de_big_t2t(args) |
|
|
|
|
|
@register_model_architecture('transformer', 'transformer_mid_25e6d_e3072_d4096') |
|
def transformer_mid_25e6d_e3072_d4096(args): |
|
args.dropout = getattr(args, 'dropout', 0.1) |
|
args.encoder_layers = getattr(args, 'encoder_layers', 25) |
|
args.decoder_layers = getattr(args, 'decoder_layers', 6) |
|
args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 768) |
|
args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 768) |
|
args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 3072) |
|
args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 4096) |
|
args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True) |
|
|
|
from fairseq.models.transformer import transformer_wmt_en_de_big_t2t |
|
transformer_wmt_en_de_big_t2t(args) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model_architecture('transformer', 'transformer_fixed_multihead_base') |
|
def transformer_fixed_multihead_base(args): |
|
args.head_dim = getattr(args, 'head_dim', 128) |
|
args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 512) |
|
args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 512) |
|
args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True) |
|
from fairseq.models.transformer import transformer_wmt_en_de_big_t2t |
|
transformer_wmt_en_de_big_t2t(args) |
|
|
|
|
|
@register_model_architecture('transformer', 'transformer_fixed_multihead_embed_1024_nhead_16_hdim_128') |
|
def transformer_fixed_multihead_embed_1024_nhead_16_hdim_128(args): |
|
args.head_dim = getattr(args, 'head_dim', 128) |
|
args.dropout = getattr(args, 'dropout', 0.1) |
|
args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True) |
|
from fairseq.models.transformer import transformer_wmt_en_de_big_t2t |
|
transformer_wmt_en_de_big_t2t(args) |
|
|
|
|
|
@register_model_architecture('transformer', 'transformer_fixed_multihead_embed_1024_nhead_16_hdim_256') |
|
def transformer_fixed_multihead_embed_1024_nhead_16_hdim_128(args): |
|
args.head_dim = getattr(args, 'head_dim', 256) |
|
args.dropout = getattr(args, 'dropout', 0.1) |
|
args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True) |
|
from fairseq.models.transformer import transformer_wmt_en_de_big_t2t |
|
transformer_wmt_en_de_big_t2t(args) |
|
|
|
|
|
@register_model_architecture('transformer', 'transformer_fh_16x128_layer_12') |
|
def transformer_fh_16x128_layer_12(args): |
|
args.head_dim = getattr(args, 'head_dim', 128) |
|
args.dropout = getattr(args, 'dropout', 0.1) |
|
args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True) |
|
from fairseq.models.transformer import transformer_wmt_en_de_big_t2t |
|
transformer_wmt_en_de_big_t2t(args) |
|
|
|
|
|
@register_model_architecture('transformer', 'transformer_fh_16x256_layer_12') |
|
def transformer_fh_16x256_layer_12(args): |
|
args.head_dim = getattr(args, 'head_dim', 256) |
|
args.dropout = getattr(args, 'dropout', 0.1) |
|
args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True) |
|
from fairseq.models.transformer import transformer_wmt_en_de_big_t2t |
|
transformer_wmt_en_de_big_t2t(args) |
|
|