File size: 4,538 Bytes
57095bd
 
 
 
 
 
 
 
 
810d1d3
57095bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1f9ac8
 
3a5d86c
 
57095bd
 
 
 
 
 
 
104edab
 
 
57095bd
918ace3
57095bd
 
 
 
918ace3
 
 
57095bd
918ace3
57095bd
918ace3
 
 
 
57095bd
918ace3
 
 
 
 
 
 
 
57095bd
918ace3
 
57095bd
918ace3
 
 
57095bd
918ace3
57095bd
 
918ace3
57095bd
918ace3
 
57095bd
918ace3
57095bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2eef6c
814c81d
0883a29
104edab
 
3582193
712f902
918ace3
 
 
 
57095bd
 
 
 
 
 
918ace3
9cf45b7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import pandas as pd
import numpy as np
import onnxruntime as ort
import os
from tqdm import tqdm
import timm
import torchvision.transforms as T
from PIL import Image
import torch
import torch.nn as nn

def is_gpu_available():
    """Check if the python package `onnxruntime-gpu` is installed."""
    return torch.cuda.is_available()


class PytorchWorker:
    """Run inference using ONNX runtime."""

    def __init__(self, model_path: str, model_name: str, number_of_categories: int = 1605):

        def _load_model(model_name, model_path):

            print("Setting up Pytorch Model")
            self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
            print(f"Using devide: {self.device}")

            model = timm.create_model(model_name, num_classes=number_of_categories, pretrained=False)

            # if not torch.cuda.is_available():
            #     model_ckpt = torch.load(model_path, map_location=torch.device("cpu"))
            # else:
            #     model_ckpt = torch.load(model_path)

            model_ckpt = torch.load(model_path, map_location=self.device)
            model.load_state_dict(model_ckpt, strict=False)
            msg = model.load_state_dict(model_ckpt, strict=False)
            print("load_state_dict: ", msg)
            # num_features = model.get_classifier().in_features
            # model.classifier = nn.Linear(num_features, number_of_categories)

            return model.to(self.device).eval()

        self.model = _load_model(model_name, model_path)

        self.transforms = T.Compose([T.Resize((299, 299)),
                                     T.ToTensor(),
                                     T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
                                    #  T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])


    def predict_image(self, image: np.ndarray) -> list():
        """Run inference using ONNX runtime.
        :param image: Input image as numpy array.
        :return: A list with logits and confidences.
        """

        # logits = self.model(self.transforms(image).unsqueeze(0).to(self.device))
        
        self.model.eval()
        
        outputs = self.model(self.transforms(image).unsqueeze(0).to(self.device))
        
        _, preds = torch.max(outputs, 1)
        
        preds = preds.cpu()  # Move tensor to CPU    

        # post process
        # max_value = torch.max(outputs)
        # if max_value < -20:
        #     preds[0]=1604
        
        print("preds: ", preds)

        return preds.tolist()  # Convert tensor to list


def make_submission(test_metadata, model_path, model_name, output_csv_path="./submission.csv", images_root_path="/tmp/data/private_testset"):
    """Make submission with given """

    model = PytorchWorker(model_path, model_name)

    predictions = []

    for _, row in tqdm(test_metadata.iterrows(), total=len(test_metadata)):
        image_path = os.path.join(images_root_path, row.image_path)

        test_image = Image.open(image_path).convert("RGB")

        logits = model.predict_image(test_image)
        
        pred_class_id = logits[0] if logits[0] !=1604 else -1
        
        predictions.append(pred_class_id)

    test_metadata["class_id"] = predictions

    user_pred_df = test_metadata.drop_duplicates("observation_id", keep="first")
    user_pred_df[["observation_id", "class_id"]].to_csv(output_csv_path, index=None)


if __name__ == "__main__":

    import zipfile

    with zipfile.ZipFile("/tmp/data/private_testset.zip", 'r') as zip_ref:
        zip_ref.extractall("/tmp/data")

    # MODEL_PATH = './efficientnet_b3_epoch_9_delete_pre.pth' # "./efficientnet_b3_epoch_9.pth"
    # MODEL_PATH = './efficientnet_b3_epoch_24_trick1.2.3_0.6067.pth'
    # MODEL_PATH = './efficientnet_b3_epoch_10_trick1.2.4_0.6016.pth'
    # MODEL_PATH = './efficientnet_b3_epoch_3_trick1.2.3_a0.6067_l5.6311.pth'
    # MODEL_PATH = './efficientnet_b3_epoch_21_trick1.2.5_a0.7237_l17.1662.pth'
    # MODEL_PATH = './efficientnet_b3_epoch_21_trcik1.5.2.pth'
    # MODEL_PATH = './efficientnet_b3_epoch_28_1.4.3.pth'
    # MODEL_PATH = './efficientnet_b3_epoch_28_trick1.4.3.2.pth'
    MODEL_PATH = './fused_model_soup.pth'
    MODEL_NAME = 'tf_efficientnet_b3_ns' #"tf_efficientnet_b1.ap_in1k"

    metadata_file_path = "./FungiCLEF2024_TestMetadata.csv"
    test_metadata = pd.read_csv(metadata_file_path)

    make_submission(
        test_metadata=test_metadata,
        model_path=MODEL_PATH,
        model_name=MODEL_NAME
    )