File size: 5,509 Bytes
863fd3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# import os
# import pandas as pd
# from PIL import Image, ImageOps
# import numpy as np
# from tqdm import tqdm
# from multiprocessing import Pool, cpu_count

# # 读取CSV文件
# csv_path = '/data/cjm/FungiCLEF2024/Dataset/06_new_train_valmetadata.csv'
# data = pd.read_csv(csv_path)

# # 设置根目录
# root_dir = '/data/cjm/FungiCLEF2024/Dataset/DF20_21_300'

# # 过滤poisonous为1的数据
# poisonous_data = data[data['poisonous'] == 1]

# # 创建保存增强数据的DataFrame,并包含原始数据
# new_data = data.copy()

# # 定义数据增强函数
# def augment_image(args):
#     row, root_dir = args
#     image_path = row['image_path']
#     full_path = os.path.join(root_dir, image_path)
#     augmented_rows = []

#     if os.path.exists(full_path):
#         image = Image.open(full_path)
#         w, h = image.size

#         # 定义旋转和翻转操作
#         transformations = {
#             'r90': image.rotate(90, expand=True),
#             'r180': image.rotate(180, expand=True),
#             'r270': image.rotate(270, expand=True),
#             'fh': ImageOps.mirror(image),
#             'fv': ImageOps.flip(image),
#         }

#         for suffix, img in transformations.items():
#             # 裁剪图片以去除旋转后的黑边
#             if suffix in ['r90', 'r270']:
#                 img = img.crop((0, 0, h, w))

#             new_image_path = os.path.splitext(image_path)[0] + f'_{suffix}.JPG'
#             new_full_path = os.path.join(root_dir, new_image_path)
#             img.save(new_full_path)

#             new_row = row.copy()
#             new_row['image_path'] = new_image_path
#             augmented_rows.append(new_row)

#     return augmented_rows

# # 准备多进程处理
# num_processes = cpu_count()
# pool = Pool(processes=num_processes)

# # 使用tqdm显示进度
# augmented_data = []
# for augmented_rows in tqdm(pool.imap_unordered(augment_image, [(row, root_dir) for _, row in poisonous_data.iterrows()]), total=len(poisonous_data)):
#     augmented_data.extend(augmented_rows)

# # 关闭进程池
# pool.close()
# pool.join()

# # 将增强后的数据添加到new_data中
# new_data = new_data.append(augmented_data, ignore_index=True)

# # 将数据保存到新的CSV文件中
# new_csv_path = '/data/cjm/FungiCLEF2024/Dataset/07_new_train_valmetadata.csv'
# new_data.to_csv(new_csv_path, index=False)


import os
import pandas as pd
from PIL import Image, ImageOps
import numpy as np
from tqdm import tqdm
from multiprocessing import Pool, cpu_count
import random

# 读取CSV文件
csv_path = '/data/cjm/FungiCLEF2024/Dataset/06_new_train_valmetadata.csv'
data = pd.read_csv(csv_path)

# 设置根目录
root_dir = '/data/cjm/FungiCLEF2024/Dataset/DF20_21_300'

# 过滤poisonous为1的数据
poisonous_data = data[data['poisonous'] == 1]

# 创建保存增强数据的DataFrame,并包含原始数据
new_data = data.copy()

# 定义数据增强函数
def augment_image(args):
    row, root_dir = args
    image_path = row['image_path']
    full_path = os.path.join(root_dir, image_path)
    augmented_rows = []

    if os.path.exists(full_path):
        image = Image.open(full_path)
        w, h = image.size

        # 定义旋转和翻转操作
        transformations = {
            'r90': image.rotate(90, expand=True),
            'r180': image.rotate(180, expand=True),
            'r270': image.rotate(270, expand=True),
            'fh': ImageOps.mirror(image),
            'fv': ImageOps.flip(image),
        }

        # 添加随机裁剪操作
        for i in range(4):
            rand = random.uniform(0.7, 0.8)
            new_w = int(w * rand)
            new_h = int(h * rand)
            left = random.randint(0, w - new_w)
            top = random.randint(0, h - new_h)
            right = left + new_w
            bottom = top + new_h
            cropped_image = image.crop((left, top, right, bottom))
            # cropped_image = cropped_image.resize((w, h))  # 调整回原始尺寸

            new_image_path = os.path.splitext(image_path)[0] + f'_crop{rand}.JPG'
            new_full_path = os.path.join(root_dir, new_image_path)
            cropped_image.save(new_full_path)

            new_row = row.copy()
            new_row['image_path'] = new_image_path
            augmented_rows.append(new_row)

        for suffix, img in transformations.items():
            # 裁剪图片以去除旋转后的黑边
            if suffix in ['r90', 'r270']:
                img = img.crop((0, 0, h, w))

            new_image_path = os.path.splitext(image_path)[0] + f'_{suffix}.JPG'
            new_full_path = os.path.join(root_dir, new_image_path)
            img.save(new_full_path)

            new_row = row.copy()
            new_row['image_path'] = new_image_path
            augmented_rows.append(new_row)

    return augmented_rows

# 准备多进程处理
num_processes = cpu_count()
pool = Pool(processes=num_processes)

# 使用tqdm显示进度
augmented_data = []
for augmented_rows in tqdm(pool.imap_unordered(augment_image, [(row, root_dir) for _, row in poisonous_data.iterrows()]), total=len(poisonous_data)):
    augmented_data.extend(augmented_rows)

# 关闭进程池
pool.close()
pool.join()

# 将增强后的数据添加到new_data中
new_data = new_data.append(augmented_data, ignore_index=True)

# 将数据保存到新的CSV文件中
new_csv_path = '/data/cjm/FungiCLEF2024/Dataset/07_new_train_valmetadata.csv'
new_data.to_csv(new_csv_path, index=False)