metadata
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
datasets:
- maywell/ko_Ultrafeedback_binarized
base model:
- yanolja/EEVE-Korean-Instruct-10.8B-v1.0
T3Q-LLM-sft1.0-dpo1.0
This model is a version of T3Q-LLM/T3Q-LLM-solar10.8-sft-v1.0 that has been fine-tuned with DPO.
Model Developers Chihoon Lee(chihoonlee10), T3Q
Prompt Template
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
Human: {prompt}
Assistant:
How to Use it
from transformers import AutoTokenizer
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0")
tokenizer = AutoTokenizer.from_pretrained("T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0")
prompt_template = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.\nHuman: {prompt}\nAssistant:\n"
text = 'νκ΅μ μλλ μ΄λμΈκ°μ? μλ μ νμ§ μ€ κ³¨λΌμ£ΌμΈμ.\n\n(A) κ²½μ±\n(B) λΆμ°\n(C) νμ\n(D) μμΈ\n(E) μ μ£Ό'
model_inputs = tokenizer(prompt_template.format(prompt=text), return_tensors='pt')
outputs = model.generate(**model_inputs, max_new_tokens=256)
output_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
print(output_text)
Example Output
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
Human: νκ΅μ μλλ μ΄λμΈκ°μ? μλ μ νμ§ μ€ κ³¨λΌμ£ΌμΈμ.
(A) κ²½μ±
(B) λΆμ°
(C) νμ
(D) μμΈ
(E) μ μ£Ό
Assistant:
(D) μμΈμ΄ νκ΅μ μλμ
λλ€. μμΈμ λλΌμ λΆλλΆμ μμΉν΄ μμΌλ©°, μ μΉ, κ²½μ , λ¬Ένμ μ€μ¬μ§μ
λλ€. μ½ 1,000λ§ λͺ
μ΄ λλ μΈκ΅¬λ₯Ό κ°μ§ μΈκ³μμ κ°μ₯ ν° λμ μ€ νλμ
λλ€. μμΈμ λμ λΉλ©, νλμ μΈ μΈνλΌ, νκΈ° λ¬Έν μ₯λ©΄μΌλ‘ μ λͺ
ν©λλ€. λν, λ§μ μμ¬μ λͺ
μμ λ°λ¬Όκ΄μ΄ μμ΄ λ°©λ¬Έκ°λ€μκ² νλΆν λ¬Έν 체νμ μ 곡ν©λλ€.
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
kobest_boolq | 0 | acc | 0.9387 | Β± | 0.0064 |
macro_f1 | 0.9387 | Β± | 0.0064 | ||
kobest_copa | 0 | acc | 0.7590 | Β± | 0.0135 |
macro_f1 | 0.7585 | Β± | 0.0135 | ||
kobest_hellaswag | 0 | acc | 0.5080 | Β± | 0.0224 |
acc_norm | 0.5580 | Β± | 0.0222 | ||
macro_f1 | 0.5049 | Β± | 0.0224 | ||
kobest_sentineg | 0 | acc | 0.8489 | Β± | 0.0180 |
macro_f1 | 0.8483 | Β± | 0.0180 |